A334778
Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly k local maxima.
Original entry on oeis.org
1, 0, 1, 0, 4, 2, 0, 18, 66, 6, 0, 72, 1168, 1192, 88, 0, 270, 16220, 61830, 33600, 1480, 0, 972, 202416, 2150688, 3821760, 1268292, 40272, 0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944, 0, 11664, 27517568, 1629254640, 15313310208, 36381368048, 24342647424, 3963672720, 71865728
Offset: 0
Triangle begins:
1;
0, 1;
0, 4, 2;
0, 18, 66, 6;
0, 72, 1168, 1192, 88;
0, 270, 16220, 61830, 33600, 1480;
0, 972, 202416, 2150688, 3821760, 1268292, 40272;
0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944;
...
The T(2,1) = 4 permutations of 1122 with 1 local maximum are 1122, 1221, 2112, 2211.
The T(2,2) = 2 permutations of 1122 with 2 local maxima are 1212, 2121.
The version for permutations of 1..n is
A263789.
-
CircPeaksBySig(sig, D)={
my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
mapput(FC, key, z)); z);
local(FC=Map());
vector(#D, i, my(k=D[i], lev=#sig); if(lev==1, k==1, my(m=sig[lev]); lev*sum(j=1, min(m,k), m*binomial(m-1,j-1)*F(lev-1,k-j,j-1)/j)));
}
Row(n)={ if(n==0, [1], CircPeaksBySig(vector(n,i,2), [0..n])) }
{ for(n=0, 8, print(Row(n))) }
A334773
Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
3, 12, 57, 30, 360, 705, 60, 1400, 7968, 7617, 105, 4170, 51750, 163584, 78357, 168, 10437, 241080, 1830000, 3293184, 791589, 252, 23072, 894201, 13562040, 64168750, 65968128, 7944321, 360, 46440, 2804480, 75278553, 759940800, 2246625000, 1319854080, 79541625
Offset: 2
Array begins:
======================================================
n\k | 2 3 4 5
----|-------------------------------------------------
2 | 3 12 30 60 ...
3 | 57 360 1400 4170 ...
4 | 705 7968 51750 241080 ...
5 | 7617 163584 1830000 13562040 ...
6 | 78357 3293184 64168750 759940800 ...
7 | 791589 65968128 2246625000 42560067360 ...
8 | 7944321 1319854080 78636093750 2383387566720 ...
...
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
A183270
T(n,k) is the number of singly defective permutations of 1..n+2*k-2 with exactly k maxima.
Original entry on oeis.org
0, 3, 2, 120, 80, 15, 4760, 3552, 860, 64, 249984, 199168, 57064, 6576, 220, 17512704, 14548480, 4643712, 681984, 42112, 672, 1599330304, 1367568384, 469942528, 80506880, 6849792, 242688, 1904, 185616337920, 162107703296, 58754129408
Offset: 1
Table starts:
0 3 120 4760 249984 17512704 1599330304 ...
2 80 3552 199168 14548480 1367568384 ...
15 860 57064 4643712 469942528 ...
64 6576 681984 80506880 ...
220 42112 6849792 ...
672 242688 ...
1904 ...
...
Some solutions for n=4 with 2 maxima:
(6,1,4,4,3,2) (4,3,1,5,6,6) (4,2,1,2,3,5) (3,2,1,6,4,3) (5,5,6,1,2,3).
-
\\ PeaksBySig defined in A334774.
T(n,k) = {my(m=n+2*k-3); (m+1)*sum(i=1, m, PeaksBySig(vector(m,j,if(i==j,2,1)), [k-1])[1])} \\ Andrew Howroyd, May 12 2020
A334772
Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.
Original entry on oeis.org
2, 12, 66, 36, 576, 1168, 80, 2610, 17376, 16220, 150, 8520, 129800, 448800, 202416, 252, 22680, 659560, 5748750, 10861056, 2395540, 392, 52416, 2596608, 46412200, 241987500, 253940736, 27517568, 576, 109116, 8505728, 273322980, 3121135440, 9885006250, 5807161344, 310123764
Offset: 2
Array begins:
==========================================================
n\k | 2 3 4 5
----|----------------------------------------------------
2 | 2 12 36 80 ...
3 | 66 576 2610 8520 ...
4 | 1168 17376 129800 659560 ...
5 | 16220 448800 5748750 46412200 ...
6 | 202416 10861056 241987500 3121135440 ...
7 | 2395540 253940736 9885006250 203933233280 ...
8 | 27517568 5807161344 395426250000 13051880894720 ...
...
The T(2,3) = 12 permutations of 111222 with 2 local maxima are 112122, 112212 and their rotations.
The T(3,2) = 66 permutations of 112233 with 2 local maxima are 112323, 113223, 113232, 121233, 121332, 122133, 122313, 123213, 123123, 123132, 131322 and their rotations.
A334775
Number of permutations of 2 indistinguishable copies of 1..n with exactly n local maxima.
Original entry on oeis.org
1, 3, 24, 339, 7392, 230217, 9689934, 529634931, 36463272996, 3086776079745, 315108659732034, 38170141911313467, 5412679282489599840, 888197438344278978537, 166988574370806672234630, 35659091146526471860555587, 8583030980293328579564829948, 2312892203852608268226402385617
Offset: 1
A334776
Total number of peaks in all permutations of 2 indistinguishable copies of 1..n.
Original entry on oeis.org
0, 3, 105, 4620, 283500, 23700600, 2610808200, 367783416000, 64607286744000, 13859305059600000, 3567385122341040000, 1085582734152396480000, 385634331725066424000000, 158175715893528308976000000, 74203019661816956710800000000, 39481403043334753112451840000000
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n)={my(u=PeaksBySig(vector(n,i,2), [0..n-1])); sum(k=1, #u, (k-1)*u[k])}
A334777
Total number of local maxima in all permutations of 2 indistinguishable copies of 1..n.
Original entry on oeis.org
1, 9, 195, 7140, 396900, 31185000, 3291888600, 449513064000, 77111922888000, 16235185926960000, 4116213602701200000, 1237059394731800640000, 434864246413372776000000, 176784623645708110032000000, 82297894534015170170160000000, 43496460979945066988294400000000
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n)={my(u=PeaksBySig(vector(n,i,2), [0..n-1])); sum(k=1, #u, k*u[k])}
A152495
1/3 of the number of permutations of 2 indistinguishable copies of 1..n with exactly 3 local maxima.
Original entry on oeis.org
0, 0, 8, 483, 16205, 430078, 10210206, 228926441, 4979392831, 106552681812, 2260112122016, 47713890438655, 1004771692065345, 21130651257100970, 444074589574292578, 9329140064903065365, 195950323696361689667, 4115367075816142112512, 86427075922333935342372
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n,i,2), [2])[1]/3} \\ Andrew Howroyd, May 12 2020
-
concat([0,0], Vec(x^3*(8 + 83*x - 617*x^2 - 1056*x^3) / ((1 - 3*x)^3*(1 - 10*x)^2*(1 - 21*x)) + O(x^22))) \\ Colin Barker, Jul 18 2020
A152496
1/3 of the number of permutations of 2 indistinguishable copies of 1..n with exactly 4 local maxima.
Original entry on oeis.org
0, 0, 0, 113, 16565, 1216902, 65819156, 3026987243, 126794945523, 5020186173560, 191940972943658, 7179017518306893, 264789361664356313, 9680016979445645738, 351879352694331441600, 12745281650338440074831, 460591166578400672643359, 16621008007245773574764028
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n)={PeaksBySig(vector(n,i,2), [3])[1]/3} \\ Andrew Howroyd, May 12 2020
A152497
1/3 of the number of permutations of 2 indistinguishable copies of 1..n with exactly 5 local maxima.
Original entry on oeis.org
0, 0, 0, 0, 2464, 744881, 104768981, 10276536243, 822955247485, 58200440129470, 3799361321633144, 235172542192199514, 14040457016024386686, 817688213483194898191, 46806533018464413823463, 2647280824791216788157413, 148469293685889945755890443, 8277727866556696292321356900
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n)={PeaksBySig(vector(n,i,2), [4])[1]/3} \\ Andrew Howroyd, May 12 2020
Showing 1-10 of 25 results.
Comments