A334774
Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n with exactly k local maxima.
Original entry on oeis.org
1, 3, 3, 9, 57, 24, 27, 705, 1449, 339, 81, 7617, 48615, 49695, 7392, 243, 78357, 1290234, 3650706, 2234643, 230217, 729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934, 2187, 7944321, 686779323, 9080961729, 30829608729, 31435152267, 9159564513, 529634931
Offset: 1
Triangle begins:
1;
3, 3;
9, 57, 24;
27, 705, 1449, 339;
81, 7617, 48615, 49695, 7392;
243, 78357, 1290234, 3650706, 2234643, 230217;
729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934;
...
The T(2,1) = 3 permutations of 1122 with 1 local maxima are 1122, 1221, 2211.
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
The T(2,1) = 3 permutations of 1122 with 0 peaks are 2211, 2112, 1122.
The T(2,2) = 3 permutations of 1122 with 1 peak are 2121, 1221, 1212.
The version for permutations of 1..n is
A008303(n,k-1).
-
PeaksBySig(sig, D)={
my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
mapput(FC, key, z)); z);
local(FC=Map());
vector(#D, i, F(#sig, D[i], 0));
}
Row(n)={ PeaksBySig(vector(n,i,2), [0..n-1]) }
{ for(n=1, 8, print(Row(n))) }
A152494
1/3 of the number of permutations of 2 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 1, 19, 235, 2539, 26119, 263863, 2648107, 26513875, 265250287, 2652876847, 26530008499, 265304159371, 2653054879735, 26530591844071, 265306057146811, 2653061016284227, 26530611583384063, 265306120353746335, 2653061217872021443, 26530612224048411643
Offset: 1
-
a(n) = {(13*10^(n-1) - 13*3^(n-1) - 14*(n-1)*3^(n-1))/49} \\ Andrew Howroyd, May 10 2020
-
concat(0, Vec(x*(1 + 3*x) / ((1 - 3*x)^2*(1 - 10*x)) + O(x^20))) \\ Colin Barker, May 19 2020
A334772
Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.
Original entry on oeis.org
2, 12, 66, 36, 576, 1168, 80, 2610, 17376, 16220, 150, 8520, 129800, 448800, 202416, 252, 22680, 659560, 5748750, 10861056, 2395540, 392, 52416, 2596608, 46412200, 241987500, 253940736, 27517568, 576, 109116, 8505728, 273322980, 3121135440, 9885006250, 5807161344, 310123764
Offset: 2
Array begins:
==========================================================
n\k | 2 3 4 5
----|----------------------------------------------------
2 | 2 12 36 80 ...
3 | 66 576 2610 8520 ...
4 | 1168 17376 129800 659560 ...
5 | 16220 448800 5748750 46412200 ...
6 | 202416 10861056 241987500 3121135440 ...
7 | 2395540 253940736 9885006250 203933233280 ...
8 | 27517568 5807161344 395426250000 13051880894720 ...
...
The T(2,3) = 12 permutations of 111222 with 2 local maxima are 112122, 112212 and their rotations.
The T(3,2) = 66 permutations of 112233 with 2 local maxima are 112323, 113223, 113232, 121233, 121332, 122133, 122313, 123213, 123123, 123132, 131322 and their rotations.
A152499
1/12 of the number of permutations of 3 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 1, 30, 664, 13632, 274432, 5497344, 109987840, 2199945216, 43999756288, 879998926848, 17599995314176, 351999979683840, 7039999912443904, 140799999624609792, 2815999998397775872, 56319999993188450304, 1126399999971143188480, 22527999999878130302976
Offset: 1
-
a(n) = {(11*20^(n-1) - 11*4^(n-1) - 12*(n-1)*4^(n-1))/128} \\ Andrew Howroyd, May 10 2020
-
concat(0, Vec(x^2*(1 + 2*x) / ((1 - 4*x)^2*(1 - 20*x)) + O(x^40))) \\ Colin Barker, Jul 15 2020
A152504
1/10 of the number of permutations of 4 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 3, 140, 5175, 183000, 6416875, 224662500, 7863609375, 275228750000, 9633019921875, 337155773437500, 11800452490234375, 413015839453125000, 14455554393310546875, 505944403833007812500, 17708054134515380859375, 619781894709960937500000, 21692366314858856201171875
Offset: 1
-
a(n) = {(11*35^(n-1) - 11*5^(n-1) - 12*(n-1)*5^(n-1))/90} \\ Andrew Howroyd, May 10 2020
-
concat(0, Vec(x^2*(3 + 5*x) / ((1 - 5*x)^2*(1 - 35*x)) + O(x^20))) \\ Colin Barker, Jul 16 2020
A152509
1/30 of the number of permutations of 5 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 2, 139, 8036, 452068, 25331360, 1418668912, 79446252224, 4448995583296, 249143789616128, 13952052465406720, 781314939695363072, 43753636633642845184, 2450203651553656365056, 137211404487455350386688, 7683838651300399095726080, 430294964472840921667551232
Offset: 1
-
LinearRecurrence[{68,-708,2016},{0,2,139},20] (* Harvey P. Dale, Feb 03 2022 *)
-
a(n) = {(23*56^(n-1) - 23*6^(n-1) - 25*(n-1)*6^(n-1))/500} \\ Andrew Howroyd, May 10 2020
-
concat(0, Vec(x^2*(2 + 3*x) / ((1 - 6*x)^2*(1 - 56*x)) + O(x^20))) \\ Colin Barker, Jul 16 2020
A152513
1/21 of the number of permutations of 6 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 5, 497, 42581, 3584693, 301183841, 25300030889, 2125207418285, 178517461842461, 14995467100301177, 1259619238806161681, 105808016078078472389, 8887873350698981879429, 746581361459780256986513, 62712834362629583374730873, 5267878086460945365330876893
Offset: 1
-
a(n) = {(61*84^(n-1) - 61*7^(n-1) - 66*(n-1)*7^(n-1))/847} \\ Andrew Howroyd, May 10 2020
-
Vec(x^2*(5 + 7*x) / ((1 - 7*x)^2*(1 - 84*x)) + O(x^18)) \\ Colin Barker, Jul 16 2020
A152517
1/56 of the number of permutations of 7 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 3, 412, 50080, 6016512, 722051072, 86646800384, 10397622337536, 1247714738176000, 149725769101213696, 17967092296776155136, 2156051075653940805632, 258726129078829378961408, 31047135489462617851822080, 3725656258735540805375623168, 447078751048265125343493357568
Offset: 1
A152518
1/36 of the number of permutations of 8 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 7, 1290, 214713, 35450244, 5849546139, 965177888238, 159254380788525, 26276973131433672, 4335700569742873071, 715390594038180275346, 118039448016603095674977, 19476508922742491987034060, 3213623972252540268102877443, 530247955421669426384081722614
Offset: 1
-
a(n) = {(97*165^(n-1) - 97*9^(n-1) - 104*(n-1)*9^(n-1))/2028} \\ Andrew Howroyd, May 10 2020
-
concat(0, Vec(x^2*(7 + 9*x) / ((1 - 9*x)^2*(1 - 165*x)) + O(x^17))) \\ Colin Barker, Jul 18 2020
Showing 1-9 of 9 results.
Comments