A334773
Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
3, 12, 57, 30, 360, 705, 60, 1400, 7968, 7617, 105, 4170, 51750, 163584, 78357, 168, 10437, 241080, 1830000, 3293184, 791589, 252, 23072, 894201, 13562040, 64168750, 65968128, 7944321, 360, 46440, 2804480, 75278553, 759940800, 2246625000, 1319854080, 79541625
Offset: 2
Array begins:
======================================================
n\k | 2 3 4 5
----|-------------------------------------------------
2 | 3 12 30 60 ...
3 | 57 360 1400 4170 ...
4 | 705 7968 51750 241080 ...
5 | 7617 163584 1830000 13562040 ...
6 | 78357 3293184 64168750 759940800 ...
7 | 791589 65968128 2246625000 42560067360 ...
8 | 7944321 1319854080 78636093750 2383387566720 ...
...
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
A152505
1/10 of the number of permutations of 4 indistinguishable copies of 1..n with exactly 3 local maxima.
Original entry on oeis.org
0, 3, 1008, 172573, 24118698, 3148308323, 401420959948, 50776368194073, 6405835208453198, 807454401764399823, 101751780468757346448, 12821210170324927605573, 1615491145485759589239698, 203552595669637872843811323, 25647653984634161426074132948
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n,i,4), [2])[1]/10} \\ Andrew Howroyd, May 12 2020
-
concat(0, Vec(x^2*(3 + 375*x - 935*x^2 - 89275*x^3 - 63000*x^4) / ((1 - 5*x)^3*(1 - 35*x)^2*(1 - 126*x)) + O(x^15))) \\ Colin Barker, Jul 19 2020
A152506
1/5 of the number of permutations of 4 indistinguishable copies of 1..n with exactly 4 local maxima.
Original entry on oeis.org
0, 1, 3277, 2483739, 1156102209, 443469188267, 156475306087585, 53194863262703203, 17785402102372820321, 5902647043581987876939, 1952635794694419540863057, 645038537405519790637628675, 212955626342843141187623423793, 70288152907297654332280282998411
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n,i,4), [3])[1]/5} \\ Andrew Howroyd, May 12 2020
A152507
1/5 of the number of permutations of 4 indistinguishable copies of 1..n with exactly 5 local maxima.
Original entry on oeis.org
0, 0, 1268, 5299607, 8184246829, 8518545179048, 7375381060406666, 5823800163847281553, 4385124494281967244359, 3220844410144729325085834, 2335142573256061888321206228, 1681577911560502131835994578291, 1206702021031355908214429714812273
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n,i,4), [4])[1]/5} \\ Andrew Howroyd, May 12 2020
A152508
1/10 of the number of permutations of 4 indistinguishable copies of 1..n with exactly 6 local maxima.
Original entry on oeis.org
0, 0, 42, 1836695, 10530242387, 29832986150825, 60695128902586540, 103817995457729295887, 161328267155502711433605, 237364194180589518867292325, 338385077937653019716292059598, 473635313924991038119333176290875, 655918703527056982804817522787817607
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n,i,4), [5])[1]/10} \\ Andrew Howroyd, May 12 2020
Showing 1-5 of 5 results.