A334774
Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n with exactly k local maxima.
Original entry on oeis.org
1, 3, 3, 9, 57, 24, 27, 705, 1449, 339, 81, 7617, 48615, 49695, 7392, 243, 78357, 1290234, 3650706, 2234643, 230217, 729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934, 2187, 7944321, 686779323, 9080961729, 30829608729, 31435152267, 9159564513, 529634931
Offset: 1
Triangle begins:
1;
3, 3;
9, 57, 24;
27, 705, 1449, 339;
81, 7617, 48615, 49695, 7392;
243, 78357, 1290234, 3650706, 2234643, 230217;
729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934;
...
The T(2,1) = 3 permutations of 1122 with 1 local maxima are 1122, 1221, 2211.
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
The T(2,1) = 3 permutations of 1122 with 0 peaks are 2211, 2112, 1122.
The T(2,2) = 3 permutations of 1122 with 1 peak are 2121, 1221, 1212.
The version for permutations of 1..n is
A008303(n,k-1).
-
PeaksBySig(sig, D)={
my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
mapput(FC, key, z)); z);
local(FC=Map());
vector(#D, i, F(#sig, D[i], 0));
}
Row(n)={ PeaksBySig(vector(n,i,2), [0..n-1]) }
{ for(n=1, 8, print(Row(n))) }
A334773
Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
3, 12, 57, 30, 360, 705, 60, 1400, 7968, 7617, 105, 4170, 51750, 163584, 78357, 168, 10437, 241080, 1830000, 3293184, 791589, 252, 23072, 894201, 13562040, 64168750, 65968128, 7944321, 360, 46440, 2804480, 75278553, 759940800, 2246625000, 1319854080, 79541625
Offset: 2
Array begins:
======================================================
n\k | 2 3 4 5
----|-------------------------------------------------
2 | 3 12 30 60 ...
3 | 57 360 1400 4170 ...
4 | 705 7968 51750 241080 ...
5 | 7617 163584 1830000 13562040 ...
6 | 78357 3293184 64168750 759940800 ...
7 | 791589 65968128 2246625000 42560067360 ...
8 | 7944321 1319854080 78636093750 2383387566720 ...
...
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
A152499
1/12 of the number of permutations of 3 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 1, 30, 664, 13632, 274432, 5497344, 109987840, 2199945216, 43999756288, 879998926848, 17599995314176, 351999979683840, 7039999912443904, 140799999624609792, 2815999998397775872, 56319999993188450304, 1126399999971143188480, 22527999999878130302976
Offset: 1
-
a(n) = {(11*20^(n-1) - 11*4^(n-1) - 12*(n-1)*4^(n-1))/128} \\ Andrew Howroyd, May 10 2020
-
concat(0, Vec(x^2*(1 + 2*x) / ((1 - 4*x)^2*(1 - 20*x)) + O(x^40))) \\ Colin Barker, Jul 15 2020
A152504
1/10 of the number of permutations of 4 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 3, 140, 5175, 183000, 6416875, 224662500, 7863609375, 275228750000, 9633019921875, 337155773437500, 11800452490234375, 413015839453125000, 14455554393310546875, 505944403833007812500, 17708054134515380859375, 619781894709960937500000, 21692366314858856201171875
Offset: 1
-
a(n) = {(11*35^(n-1) - 11*5^(n-1) - 12*(n-1)*5^(n-1))/90} \\ Andrew Howroyd, May 10 2020
-
concat(0, Vec(x^2*(3 + 5*x) / ((1 - 5*x)^2*(1 - 35*x)) + O(x^20))) \\ Colin Barker, Jul 16 2020
A152509
1/30 of the number of permutations of 5 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 2, 139, 8036, 452068, 25331360, 1418668912, 79446252224, 4448995583296, 249143789616128, 13952052465406720, 781314939695363072, 43753636633642845184, 2450203651553656365056, 137211404487455350386688, 7683838651300399095726080, 430294964472840921667551232
Offset: 1
-
LinearRecurrence[{68,-708,2016},{0,2,139},20] (* Harvey P. Dale, Feb 03 2022 *)
-
a(n) = {(23*56^(n-1) - 23*6^(n-1) - 25*(n-1)*6^(n-1))/500} \\ Andrew Howroyd, May 10 2020
-
concat(0, Vec(x^2*(2 + 3*x) / ((1 - 6*x)^2*(1 - 56*x)) + O(x^20))) \\ Colin Barker, Jul 16 2020
A152513
1/21 of the number of permutations of 6 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 5, 497, 42581, 3584693, 301183841, 25300030889, 2125207418285, 178517461842461, 14995467100301177, 1259619238806161681, 105808016078078472389, 8887873350698981879429, 746581361459780256986513, 62712834362629583374730873, 5267878086460945365330876893
Offset: 1
-
a(n) = {(61*84^(n-1) - 61*7^(n-1) - 66*(n-1)*7^(n-1))/847} \\ Andrew Howroyd, May 10 2020
-
Vec(x^2*(5 + 7*x) / ((1 - 7*x)^2*(1 - 84*x)) + O(x^18)) \\ Colin Barker, Jul 16 2020
A152517
1/56 of the number of permutations of 7 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 3, 412, 50080, 6016512, 722051072, 86646800384, 10397622337536, 1247714738176000, 149725769101213696, 17967092296776155136, 2156051075653940805632, 258726129078829378961408, 31047135489462617851822080, 3725656258735540805375623168, 447078751048265125343493357568
Offset: 1
A152518
1/36 of the number of permutations of 8 indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
0, 7, 1290, 214713, 35450244, 5849546139, 965177888238, 159254380788525, 26276973131433672, 4335700569742873071, 715390594038180275346, 118039448016603095674977, 19476508922742491987034060, 3213623972252540268102877443, 530247955421669426384081722614
Offset: 1
-
a(n) = {(97*165^(n-1) - 97*9^(n-1) - 104*(n-1)*9^(n-1))/2028} \\ Andrew Howroyd, May 10 2020
-
concat(0, Vec(x^2*(7 + 9*x) / ((1 - 9*x)^2*(1 - 165*x)) + O(x^17))) \\ Colin Barker, Jul 18 2020
Showing 1-8 of 8 results.
Comments