cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A334773 Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n with exactly 2 local maxima.

Original entry on oeis.org

3, 12, 57, 30, 360, 705, 60, 1400, 7968, 7617, 105, 4170, 51750, 163584, 78357, 168, 10437, 241080, 1830000, 3293184, 791589, 252, 23072, 894201, 13562040, 64168750, 65968128, 7944321, 360, 46440, 2804480, 75278553, 759940800, 2246625000, 1319854080, 79541625
Offset: 2

Views

Author

Andrew Howroyd, May 10 2020

Keywords

Examples

			Array begins:
======================================================
n\k |       2          3           4              5
----|-------------------------------------------------
  2 |       3         12          30            60 ...
  3 |      57        360        1400          4170 ...
  4 |     705       7968       51750        241080 ...
  5 |    7617     163584     1830000      13562040 ...
  6 |   78357    3293184    64168750     759940800 ...
  7 |  791589   65968128  2246625000   42560067360 ...
  8 | 7944321 1319854080 78636093750 2383387566720 ...
  ...
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
		

Crossrefs

Columns k=2..8 are 3*A152494, 12*A152499, 10*A152504, 30*A152509, 21*A152513, 56*A152517, 36*A152518.

Programs

  • PARI
    T(n,k) = {3*((k^2 + 4*k + 1)*binomial(k+3,3)^(n-1) - (2*k^2 + 9*k + 1)*(k+1)^(n-1) - k*(k + 5)*(n-2)*(k+1)^(n-1))/(k + 5)^2}

Formula

T(n,k) = Sum_{j=0..n-2} P(k-1,3) * P(k-2,2) * P(k,2)^(n-2-j) * P(k,4)^j + 2 * (n-j-2) * P(k-1,3)^2 * P(k,2)^(n-3-j) * P(k,4)^j where P(n,k) = binomial(n+k-1,k-1).
T(n,k) = 3*((k^2 + 4*k + 1)*binomial(k+3,3)^(n-1) - (2*k^2 + 9*k + 1)*(k+1)^(n-1) - k*(k + 5)*(n-2)*(k+1)^(n-1))/(k + 5)^2.

A152514 1/7 of the number of permutations of 6 indistinguishable copies of 1..n with exactly 3 local maxima.

Original entry on oeis.org

0, 50, 42035, 22286180, 10637332433, 4951385566862, 2291336707020095, 1058974724436063848, 489282897651319234589, 226052182024142033107730, 104436435218150212780973867, 48249663449218668484434011660, 22291347308935948403947280066153, 10298602712004866151067473095589974
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2008

Keywords

Crossrefs

Programs

  • PARI
    \\ PeaksBySig defined in A334774.
    a(n) = {PeaksBySig(vector(n,i,6), [2])[1]/7} \\ Andrew Howroyd, May 12 2020
    
  • PARI
    concat(0, Vec(x^2*(50 + 9485*x - 176155*x^2 - 6027882*x^3 - 3111696*x^4) / ((1 - 7*x)^3*(1 - 84*x)^2*(1 - 462*x)) + O(x^15))) \\ Colin Barker, Jul 19 2020

Formula

From Colin Barker, Jul 19 2020: (Start)
G.f.: x^2*(50 + 9485*x - 176155*x^2 - 6027882*x^3 - 3111696*x^4) / ((1 - 7*x)^3*(1 - 84*x)^2*(1 - 462*x)).
a(n) = 651*a(n-1) - 98049*a(n-2) + 5130937*a(n-3) - 81120186*a(n-4) + 0*a(n-5) - 0*a(n-6) for n>6.
(End)

Extensions

Terms a(7) and beyond from Andrew Howroyd, May 12 2020

A152515 1/7 of the number of permutations of 6 indistinguishable copies of 1..n with exactly 4 local maxima.

Original entry on oeis.org

0, 50, 321315, 824734660, 1615456263653, 2896390530019554, 5041787615373941503, 8691245890710074064416, 14935422227548071392068185, 25640373750597951750787951486, 44004685572828990924291145512563, 75515015253707870321041620455156412, 129585276023496655588712207028376849165
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2008

Keywords

Crossrefs

Programs

  • PARI
    \\ PeaksBySig defined in A334774.
    a(n) = {PeaksBySig(vector(n,i,6), [3])[1]/7} \\ Andrew Howroyd, May 12 2020

Extensions

Terms a(7) and beyond from Andrew Howroyd, May 12 2020

A152516 1/21 of the number of permutations of 6 indistinguishable copies of 1..n with exactly 5 local maxima.

Original entry on oeis.org

0, 5, 285365, 3328373375, 23122804891093, 132106319858700205, 697701196338306192217, 3568377130807709398000279, 18013809185839252548978200161, 90462608845509339028810174966669, 453352973288072573009512458761236141, 2270154484704085339079608424120307696559
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2008

Keywords

Crossrefs

Programs

  • PARI
    \\ PeaksBySig defined in A334774.
    a(n) = {PeaksBySig(vector(n,i,6), [4])[1]/21} \\ Andrew Howroyd, May 12 2020

Extensions

Terms a(7) and beyond from Andrew Howroyd, May 12 2020
Showing 1-4 of 4 results.