A334773
Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
3, 12, 57, 30, 360, 705, 60, 1400, 7968, 7617, 105, 4170, 51750, 163584, 78357, 168, 10437, 241080, 1830000, 3293184, 791589, 252, 23072, 894201, 13562040, 64168750, 65968128, 7944321, 360, 46440, 2804480, 75278553, 759940800, 2246625000, 1319854080, 79541625
Offset: 2
Array begins:
======================================================
n\k | 2 3 4 5
----|-------------------------------------------------
2 | 3 12 30 60 ...
3 | 57 360 1400 4170 ...
4 | 705 7968 51750 241080 ...
5 | 7617 163584 1830000 13562040 ...
6 | 78357 3293184 64168750 759940800 ...
7 | 791589 65968128 2246625000 42560067360 ...
8 | 7944321 1319854080 78636093750 2383387566720 ...
...
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
A152500
1/4 the number of permutations of 3 indistinguishable copies of 1..n with exactly 3 local maxima.
Original entry on oeis.org
0, 1, 231, 21490, 1476084, 90050080, 5228286336, 297239712256, 16749407726592, 940343619493888, 52712719000338432, 2953100593082269696, 165399775808105742336, 9262957817232621568000, 518737995604927325405184, 29049593918675470746910720, 1626782962901824260072800256
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n,i,3), [2])[1]/4} \\ Andrew Howroyd, May 12 2020
-
concat(0, Vec(x^2*(1 + 123*x + 382*x^2 - 16548*x^3 - 15440*x^4) / ((1 - 4*x)^3*(1 - 20*x)^2*(1 - 56*x)) + O(x^19))) \\ Colin Barker, Jul 19 2020
A152501
1/8 the number of permutations of 3 indistinguishable copies of 1..n with exactly 4 local maxima.
Original entry on oeis.org
0, 0, 46, 22615, 5036741, 819235874, 114962084772, 14974498962192, 1876234090571968, 230313563301166336, 27966954502164518912, 3376705184454377873408, 406486565581361073979392, 48857132166440216820449280, 5867654791849010140880306176, 704409107074292841154786361344
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n,i,3), [3])[1]/8} \\ Andrew Howroyd, May 12 2020
A152502
1/12 of the number of permutations of 3 indistinguishable copies of 1..n with exactly 5 local maxima.
Original entry on oeis.org
0, 0, 1, 7274, 6251162, 2764274116, 897380159188, 247392790837624, 62200280199674352, 14820288466400312448, 3420153590479988396800, 774303834249035054901248, 173288568985609322651099136, 38513999874946087671220207616, 8524401267844398602674455314432
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n,i,3), [4])[1]/12} \\ Andrew Howroyd, May 12 2020
A152503
1/8 of the number of permutations of 3 indistinguishable copies of 1..n with exactly 6 local maxima.
Original entry on oeis.org
0, 0, 0, 925, 5134608, 7080780596, 5503883684118, 3175651343215500, 1543855504958661492, 676391857775294288488, 277604477433374392213008, 109265969423431070616562496, 41856404659462959845867172864, 15752452465692536904424614273024, 5860017184412283112523269770190848
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n,i,3), [5])[1]/8} \\ Andrew Howroyd, May 12 2020
Showing 1-5 of 5 results.