cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151630 Number of permutations of 2 indistinguishable copies of 1..n with exactly 8 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 0, 0, 1, 37257, 49258935, 19323413187, 3950966047950, 539417838175698, 56160822639510114, 4828612774471173450, 360918591663105680031, 24285778099889122541071, 1507815882167268489272385, 87937588306397361416746005, 4882223035755085016119166100
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=8 of A154283.

Programs

  • Magma
    [(&+[(-1)^j*Binomial(2*n+1, j)*Binomial(10-j, 2)^n: j in [0..8]]): n in [1..30]]; // G. C. Greubel, Sep 08 2022
    
  • Mathematica
    With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1,j]*B[10-j,2]^n, {j,0,8}], {n, 30}]] (* G. C. Greubel, Sep 08 2022 *)
  • SageMath
    def A151630(n): return sum((-1)^j*binomial(2*n+1, j)*binomial(10-j, 2)^n for j in (0..8))
    [A151630(n) for n in (1..30)] # G. C. Greubel, Sep 08 2022

Formula

From G. C. Greubel, Sep 08 2022: (Start)
a(n) = Sum_{j=0..8} (-1)^j*binomial(2*n+1, j)*binomial(10-j, 2)^n.
G.f. and e.g.f. are in the file "Generating functions". (End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 06 2020