cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151636 Number of permutations of 3 indistinguishable copies of 1..n with exactly 6 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 1, 49682, 58571184, 21475242671, 4476844162434, 678770257169016, 84698452637705746, 9324662905839457490, 944619860914428706035, 90435965482528402360106, 8327298182652856026223632, 746238093776109096993716949, 65611401726068220422014371676
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=6 of A174266.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*Binomial[3*n+1, k-j+2]*(Binomial[j+1,3])^n, {j, 0, k+2}];
    Table[T[n, 6], {n, 30}] (* G. C. Greubel, Mar 26 2022 *)
  • PARI
    a(n) = sum(j=0, 8, (-1)^j*binomial(3*n+1, 8-j)*(binomial(j+1, 3))^n); \\ Michel Marcus, Mar 27 2022
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(k-j)*binomial(3*n+1, k-j+2)*(binomial(j+1,3))^n for j in (0..k+2) )
    [T(n, 6) for n in (1..30)] # G. C. Greubel, Mar 26 2022
    

Formula

a(n) = Sum_{j=0..8} (-1)^j*binomial(3*n+1, 8-j)*(binomial(j+1, 3))^n. - G. C. Greubel, Mar 26 2022

Extensions

Terms a(9) and beyond from Andrew Howroyd, May 06 2020