A151636 Number of permutations of 3 indistinguishable copies of 1..n with exactly 6 adjacent element pairs in decreasing order.
0, 0, 1, 49682, 58571184, 21475242671, 4476844162434, 678770257169016, 84698452637705746, 9324662905839457490, 944619860914428706035, 90435965482528402360106, 8327298182652856026223632, 746238093776109096993716949, 65611401726068220422014371676
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (462, -97119, 12368586, -1071791874, 67276115172, -3179430045126, 116078176526940, -3333091664566125, 76240546809223870, -1401969472955910939, 20859439219374986298, -252205532159847743136, 2484342723967019291664, -19958746288798848738096, 130732178656572589908768, -697028928252901175309184, 3016166101164375614922240, -10546444216517128719718400, 29623887798829604653056000, -66331952042317220782080000, 117232249430274689433600000, -161447240088380473344000000, 170296114651151892480000000, -134298682034837913600000000, 76357985182875648000000000, -29486276845240320000000000, 6908379398144000000000000, -740183506944000000000000).
Crossrefs
Column k=6 of A174266.
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*Binomial[3*n+1, k-j+2]*(Binomial[j+1,3])^n, {j, 0, k+2}]; Table[T[n, 6], {n, 30}] (* G. C. Greubel, Mar 26 2022 *)
-
PARI
a(n) = sum(j=0, 8, (-1)^j*binomial(3*n+1, 8-j)*(binomial(j+1, 3))^n); \\ Michel Marcus, Mar 27 2022
-
Sage
@CachedFunction def T(n, k): return sum( (-1)^(k-j)*binomial(3*n+1, k-j+2)*(binomial(j+1,3))^n for j in (0..k+2) ) [T(n, 6) for n in (1..30)] # G. C. Greubel, Mar 26 2022
Formula
a(n) = Sum_{j=0..8} (-1)^j*binomial(3*n+1, 8-j)*(binomial(j+1, 3))^n. - G. C. Greubel, Mar 26 2022
Extensions
Terms a(9) and beyond from Andrew Howroyd, May 06 2020