cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151638 Number of permutations of 3 indistinguishable copies of 1..n with exactly 8 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 0, 243, 12750255, 40396577931, 41106807537048, 22745757394235250, 8699569720553953791, 2617057246555282014495, 668634213456480163469985, 152325974081288304581227794, 31960987230978975148286275260, 6315174416665212479526100114476
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=8 of A174266.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*Binomial[3*n+1, k-j+2]*(Binomial[j+1,3])^n, {j, 0, k+2}];
    Table[T[n, 8], {n, 30}] (* G. C. Greubel, Mar 26 2022 *)
  • PARI
    a(n) = sum(j=0, 10, (-1)^j*binomial(3*n+1, 10-j)*(binomial(j+1, 3))^n); \\ Michel Marcus, Mar 27 2022
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(k-j)*binomial(3*n+1, k-j+2)*(binomial(j+1,3))^n for j in (0..k+2) )
    [T(n, 8) for n in (1..30)] # G. C. Greubel, Mar 26 2022
    

Formula

a(n) = Sum_{j=0..10} (-1)^j*binomial(3*n+1, 10-j)*(binomial(j+1, 3))^n. - G. C. Greubel, Mar 26 2022

Extensions

Terms a(9) and beyond from Andrew Howroyd, May 06 2020