A151675 Row sums of A154685.
8, 27, 63, 122, 210, 333, 497, 708, 972, 1295, 1683, 2142, 2678, 3297, 4005, 4808, 5712, 6723, 7847, 9090, 10458, 11957, 13593, 15372, 17300, 19383, 21627, 24038, 26622, 29385, 32333, 35472, 38808, 42347, 46095, 50058, 54242, 58653, 63297
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[8, 27, 63, 122]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
-
Mathematica
CoefficientList[Series[(8-5*x+3*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
-
Python
def A151675(n): return n*(2*n**2 +5*n+9)//2 print([A151675(n) for n in range(1,51)]) # G. C. Greubel, Jan 21 2025
Formula
From R. J. Mathar, May 31 2009: (Start)
a(n) = n*(2*n^2 + 5*n + 9)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(8 - 5*x + 3*x^2)/(1-x)^4. (End)
a(n) = A162261(n) + 8*n. - L. Edson Jeffery, Oct 12 2012
E.g.f.: (1/2)*x*(16 + 11*x + 2*x^2)*exp(x). - G. C. Greubel, Jan 21 2025
Extensions
Extended by R. J. Mathar, May 31 2009