cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151675 Row sums of A154685.

Original entry on oeis.org

8, 27, 63, 122, 210, 333, 497, 708, 972, 1295, 1683, 2142, 2678, 3297, 4005, 4808, 5712, 6723, 7847, 9090, 10458, 11957, 13593, 15372, 17300, 19383, 21627, 24038, 26622, 29385, 32333, 35472, 38808, 42347, 46095, 50058, 54242, 58653, 63297
Offset: 1

Views

Author

N. J. A. Sloane, May 31 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[8, 27, 63, 122]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
    
  • Mathematica
    CoefficientList[Series[(8-5*x+3*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
  • Python
    def A151675(n): return n*(2*n**2 +5*n+9)//2
    print([A151675(n) for n in range(1,51)]) # G. C. Greubel, Jan 21 2025

Formula

From R. J. Mathar, May 31 2009: (Start)
a(n) = n*(2*n^2 + 5*n + 9)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(8 - 5*x + 3*x^2)/(1-x)^4. (End)
a(n) = A162261(n) + 8*n. - L. Edson Jeffery, Oct 12 2012
E.g.f.: (1/2)*x*(16 + 11*x + 2*x^2)*exp(x). - G. C. Greubel, Jan 21 2025

Extensions

Extended by R. J. Mathar, May 31 2009