cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A154685 Triangle read by rows: T(n, k) = 2*n*k + n + k + 4.

Original entry on oeis.org

8, 11, 16, 14, 21, 28, 17, 26, 35, 44, 20, 31, 42, 53, 64, 23, 36, 49, 62, 75, 88, 26, 41, 56, 71, 86, 101, 116, 29, 46, 63, 80, 97, 114, 131, 148, 32, 51, 70, 89, 108, 127, 146, 165, 184, 35, 56, 77, 98, 119, 140, 161, 182, 203, 224, 38, 61, 84, 107, 130, 153, 176, 199, 222, 245, 268
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Comments

The terms form a subset of A153039 because 2*T(n, k) - 7 = (2*n+1)*(2*k+1) are not prime.

Examples

			Triangle begins:
   8;
  11, 16;
  14, 21, 28;
  17, 26, 35, 44;
  20, 31, 42, 53,  64;
  23, 36, 49, 62,  75,  88;
  26, 41, 56, 71,  86, 101, 116;
  29, 46, 63, 80,  97, 114, 131, 148;
  32, 51, 70, 89, 108, 127, 146, 165, 184;
  35, 56, 77, 98, 119, 140, 161, 182, 203, 224;
		

Crossrefs

Cf. A151675 (row sums).
Similar triangle: A155724.
Columns k: A016789 (k=1), A016861 (k=2).
Main diagonal: A137882, A271649.

Programs

Formula

Sum_{k=1..n} T(n, k) = A151675(n). - N. J. A. Sloane, May 31 2009
T(n, k) = A155724(n,k) + 8. - L. Edson Jeffery, Oct 12 2012
From G. C. Greubel, Jan 21 2025: (Start)
T(2*n-1, n) = 4*n^2 + n + 3.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1/4)*(9*(1-(-1)^n) + 2*(2-3*(-1)^n)*n - 4*(-1)^n*n^2).
G.f.: x*y*(8 - 5*(x+y) + 4*x*y)/((1-x)*(1-y))^2.
E.g.f.: 4 - (4+x)*exp(x) - (4+y)*exp(y) + (4+x+y+2*x*y)*exp(x+y).
(End)

Extensions

Clarified comment. - R. J. Mathar, Jan 24 2009

A162261 a(n) = (2*n^3 + 5*n^2 - 7*n)/2.

Original entry on oeis.org

0, 11, 39, 90, 170, 285, 441, 644, 900, 1215, 1595, 2046, 2574, 3185, 3885, 4680, 5576, 6579, 7695, 8930, 10290, 11781, 13409, 15180, 17100, 19175, 21411, 23814, 26390, 29145, 32085, 35216, 38544, 42075, 45815, 49770, 53946, 58349, 62985, 67860
Offset: 1

Views

Author

Vincenzo Librandi, Jun 29 2009

Keywords

Crossrefs

Programs

  • Magma
    [(2*n^3 + 5*n^2 - 7*n)/2 : n in [1..50]]; // Wesley Ivan Hurt, May 07 2021
    
  • Mathematica
    CoefficientList[Series[x*(11-5*x)/(1-x)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 11, 39, 90}, 50](* Vincenzo Librandi, Mar 04 2012 *)
  • Python
    def A162261(n): return n*(2*pow(n,2) +5*n -7)//2
    print([A162261(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025

Formula

Row sums from A155724: a(n) = Sum_{m=1..n} (2*m*n + m + n - 4).
From Vincenzo Librandi, Mar 04 2012: (Start)
G.f.: x^2*(11 - 5*x)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
a(n) = A151675(n) - 8*n. - L. Edson Jeffery, Oct 12 2012
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=2} 1/a(n) = 8*log(2)/63 + 1166/19845.
Sum_{n>=2} (-1)^n/a(n) = (32*log(2) - 2*Pi - 3566/315)/63. (End)
E.g.f.: (1/2)*x^2*(11 + 2*x)*exp(x). - G. C. Greubel, Jan 21 2025

Extensions

New name from Vincenzo Librandi, Mar 04 2012
Showing 1-2 of 2 results.