Original entry on oeis.org
8, 27, 63, 122, 210, 333, 497, 708, 972, 1295, 1683, 2142, 2678, 3297, 4005, 4808, 5712, 6723, 7847, 9090, 10458, 11957, 13593, 15372, 17300, 19383, 21627, 24038, 26622, 29385, 32333, 35472, 38808, 42347, 46095, 50058, 54242, 58653, 63297
Offset: 1
-
I:=[8, 27, 63, 122]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
-
CoefficientList[Series[(8-5*x+3*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
-
def A151675(n): return n*(2*n**2 +5*n+9)//2
print([A151675(n) for n in range(1,51)]) # G. C. Greubel, Jan 21 2025
A056220
a(n) = 2*n^2 - 1.
Original entry on oeis.org
-1, 1, 7, 17, 31, 49, 71, 97, 127, 161, 199, 241, 287, 337, 391, 449, 511, 577, 647, 721, 799, 881, 967, 1057, 1151, 1249, 1351, 1457, 1567, 1681, 1799, 1921, 2047, 2177, 2311, 2449, 2591, 2737, 2887, 3041, 3199, 3361, 3527, 3697, 3871, 4049, 4231, 4417, 4607, 4801
Offset: 0
a(0) = 0^2-1*1 = -1, a(1) = 1^2 - 4*0 = 1, a(2) = 2^2 - 9*1 = 7, etc.
a(4) = 31 = (1, 3, 3, 1) dot (1, 6, 4, 0) = (1 + 18 + 12 + 0). - _Gary W. Adamson_, Aug 29 2008
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq., Vol. 13 (2010), Article # 10.7.8.
- Mitch Phillipson, Manda Riehl, and Tristan Williams, Enumeration of Wilf classes in Sn ~ Cr for two patterns of length 3, PU. M. A., Vol. 21, No. 2 (2010), pp. 321-338.
- Marco Ripà, The rectangular spiral or the n1 X n2 X ... X nk Points Problem , Notes on Number Theory and Discrete Mathematics, Vol. 20, No. 1 (2014), pp. 59-71.
- Leo Tavares, Illustration: Twin Squares
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000105,
A000217,
A000290,
A000384,
A001082,
A001653,
A001844,
A002378,
A002593,
A003215,
A005563,
A028347,
A036666,
A046092,
A047875,
A062717,
A069074,
A077585,
A087475,
A119258,
A143593,
A154685,
A162610,
A188653,
A225227.
Cf.
A066049 (indices of prime terms)
Column 2 of array
A188644 (starting at offset 1).
-
List([0..50], n-> 2*n^2-1); # Muniru A Asiru, Jul 24 2018
-
[2*n^2-1 : n in [0..50]]; // Vincenzo Librandi, May 30 2014
-
A056220:=n->2*n^2-1; seq(A056220(n), n=0..50); # Wesley Ivan Hurt, Jun 16 2014
-
Array[2 #^2 - 1 &, 50, 0] (* Robert G. Wilson v, Jul 23 2018 *)
CoefficientList[Series[(x^2 +4x -1)/(1-x)^3, {x, 0, 50}], x] (* or *)
LinearRecurrence[{3, -3, 1}, {-1, 1, 7}, 51] (* Robert G. Wilson v, Jul 24 2018 *)
-
a(n)=2*n^2-1;
-
[2*n^2-1 for n in (0..50)] # G. C. Greubel, Jul 07 2019
A051890
a(n) = 2*(n^2 - n + 1).
Original entry on oeis.org
2, 2, 6, 14, 26, 42, 62, 86, 114, 146, 182, 222, 266, 314, 366, 422, 482, 546, 614, 686, 762, 842, 926, 1014, 1106, 1202, 1302, 1406, 1514, 1626, 1742, 1862, 1986, 2114, 2246, 2382, 2522, 2666, 2814, 2966, 3122, 3282, 3446, 3614, 3786, 3962
Offset: 0
Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Apr 30 2000
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- William G. Brown, On Hamiltonian regular graphs of girth six, J. London Math. Soc., 42 (1967): 514-520.
- Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
- William Q. Erickson and Jan Kretschmann, The structure and normalized volume of Monge polytopes, arXiv:2311.07522 [math.CO], 2023. See p. 10.
- Parabola, Problem #Q607, vol. 20, no. 2, 1984, p. 27.
- Eric Weisstein's World of Mathematics, Plane Division by Ellipses
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Moore lower bound on the order of a (k,g) cage:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4),
A061547 (k=5),
A198306 (k=6),
A198307 (k=7),
A198308 (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5), this sequence (g=6),
A188377 (g=7).
-
List([0..50], n-> 2*(n^2-n+1)); # G. C. Greubel, Feb 21 2019
-
[2*(n^2-n+1): n in [0..50]]; // G. C. Greubel, Feb 21 2019
-
A051890 := n->2*(n^2-n+1); seq(A051890(n) = n=0..50);
-
Table[2*(n^2-n+1), {n, 0, 50}] (* G. C. Greubel, Jul 14 2017 *)
LinearRecurrence[{3,-3,1},{2,2,6},50] (* Harvey P. Dale, Jul 14 2025 *)
-
a(n)=2*(n^2-n+1) \\ Charles R Greathouse IV, Sep 24 2015
-
[2*(n^2-n+1) for n in (0..50)] # G. C. Greubel, Feb 21 2019
A093328
a(n) = 2*n^2 + 3.
Original entry on oeis.org
3, 5, 11, 21, 35, 53, 75, 101, 131, 165, 203, 245, 291, 341, 395, 453, 515, 581, 651, 725, 803, 885, 971, 1061, 1155, 1253, 1355, 1461, 1571, 1685, 1803, 1925, 2051, 2181, 2315, 2453, 2595, 2741, 2891, 3045, 3203, 3365, 3531, 3701, 3875, 4053, 4235, 4421, 4611
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Steven Edwards and William Griffiths, Generalizations of Delannoy and cross polytope numbers, Fib. Q., Vol. 55, No. 4 (2017), pp. 356-366.
- Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
- Eric S. Egge and Toufik Mansour, 132-avoiding two-stack sortable permutations, Fibonacci numbers, and Pell numbers, Discrete Applied Mathematics, Vol. 143, No. 1-3 (2004), pp. 72-83; arXiv preprint, arXiv:math/0205206 [math.CO], 2002.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[2*n^2+3: n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
-
Table[2 n^2 + 3, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011*)
CoefficientList[Series[(3 - 4 x + 5 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 08 2012 *)
LinearRecurrence[{3, -3, 1}, {3, 5, 11}, 50] (* Harvey P. Dale, Apr 03 2016 *)
-
a(n)=2*n^2+3; \\ Zak Seidov, Sep 27 2015
Simpler definition and new offset from Paul F. Brewbaker, Jun 23 2009
A137882
Number of (directed) Hamiltonian paths in the n-ladder graph.
Original entry on oeis.org
2, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516, 5728, 5944, 6164, 6388, 6616, 6848, 7084, 7324, 7568, 7816
Offset: 1
-
A137882:=n->2*(n^2-n+2): 2,seq(A137882(n), n=2..100); # Wesley Ivan Hurt, Apr 25 2017
-
CoefficientList[Series[2*x*(1 + x - x^2 + x^3)/(1 - x)^3, {x,0,50}], x] (* G. C. Greubel, Apr 25 2017 *)
LinearRecurrence[{3,-3,1},{2,8,16,28},70] (* Harvey P. Dale, Nov 15 2018 *)
-
my(x='x+O('x^50)); Vec(2*x*(1 + x - x^2 + x^3)/(1 - x)^3) \\ G. C. Greubel, Apr 25 2017
Corrected the formula which was confusing offsets -
R. J. Mathar, Jun 04 2010
A155724
Triangle read by rows: T(n, k) = 2*n*k + n + k - 4.
Original entry on oeis.org
0, 3, 8, 6, 13, 20, 9, 18, 27, 36, 12, 23, 34, 45, 56, 15, 28, 41, 54, 67, 80, 18, 33, 48, 63, 78, 93, 108, 21, 38, 55, 72, 89, 106, 123, 140, 24, 43, 62, 81, 100, 119, 138, 157, 176, 27, 48, 69, 90, 111, 132, 153, 174, 195, 216, 30, 53, 76, 99, 122, 145, 168, 191, 214, 237, 260
Offset: 1
Triangle begins:
0;
3, 8;
6, 13, 20;
9, 18, 27, 36;
12, 23, 34, 45, 56;
15, 28, 41, 54, 67, 80;
18, 33, 48, 63, 78, 93, 108;
21, 38, 55, 72, 89, 106, 123, 140;
24, 43, 62, 81, 100, 119, 138, 157, 176;
27, 48, 69, 90, 111, 132, 153, 174, 195, 216;
-
/* Triangle: */ [[2*m*n+m+n-4: m in [1..n]]: n in [1..10]]; // Bruno Berselli, Aug 31 2012
-
Flatten[Table[2 n m + m + n - 4, {n, 10}, {m, n}]] (* Vincenzo Librandi, Mar 01 2012 *)
-
def A155724(n,k): return 2*n*k+n+k-4
print(flatten([[A155724(n,k) for k in range(1,n+1)] for n in range(1,16)])) # G. C. Greubel, Jan 21 2025
A153037
a(n) = 2*n^2 + 16*n + 23.
Original entry on oeis.org
23, 41, 63, 89, 119, 153, 191, 233, 279, 329, 383, 441, 503, 569, 639, 713, 791, 873, 959, 1049, 1143, 1241, 1343, 1449, 1559, 1673, 1791, 1913, 2039, 2169, 2303, 2441, 2583, 2729, 2879, 3033, 3191, 3353, 3519, 3689, 3863, 4041, 4223, 4409, 4599, 4793, 4991, 5193
Offset: 0
-
I:=[23, 41, 63]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 22 2012
-
Table[2*n^2 + 16*n + 23, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
LinearRecurrence[{3, -3, 1}, {23, 41, 63}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
CoefficientList[Series[(23 - 28*x +9*x^2)/(1 -x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Jan 04 2013 *)
-
a(n)=2*n^2+16*n+23 \\ Charles R Greathouse IV, Jan 11 2012
A163652
Triangle read by rows where T(n,m)=2*m*n + m + n + 6.
Original entry on oeis.org
10, 13, 18, 16, 23, 30, 19, 28, 37, 46, 22, 33, 44, 55, 66, 25, 38, 51, 64, 77, 90, 28, 43, 58, 73, 88, 103, 118, 31, 48, 65, 82, 99, 116, 133, 150, 34, 53, 72, 91, 110, 129, 148, 167, 186, 37, 58, 79, 100, 121, 142, 163, 184, 205, 226, 40, 63, 86, 109, 132, 155, 178
Offset: 1
Triangle begins:
10;
13, 18;
16, 23, 30;
19, 28, 37, 46;
22, 33, 44, 55, 66;
25, 38, 51, 64, 77, 90;
28, 43, 58, 73, 88, 103, 118;
31, 48, 65, 82, 99, 116, 133, 150;
34, 53, 72, 91, 110, 129, 148, 167, 186;
37, 58, 79, 100, 121, 142, 163, 184, 205, 226;
40, 63, 86, 109, 132, 155, 178, 201, 224, 247, 270;
etc.
-
[2*n*k + n + k + 6: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:=2 n*k + n + k + 6; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
Showing 1-8 of 8 results.
Comments