A155722
Numbers k such that 2*k + 9 is prime.
Original entry on oeis.org
1, 2, 4, 5, 7, 10, 11, 14, 16, 17, 19, 22, 25, 26, 29, 31, 32, 35, 37, 40, 44, 46, 47, 49, 50, 52, 59, 61, 64, 65, 70, 71, 74, 77, 79, 82, 85, 86, 91, 92, 94, 95, 101, 107, 109, 110, 112, 115, 116, 121, 124, 127, 130, 131, 134, 136, 137, 142, 149, 151, 152, 154, 161, 164
Offset: 1
-
Filtered([0..200], k-> IsPrime(2*k+9)); # G. C. Greubel, May 21 2019
-
[n: n in [0..200] | IsPrime(2*n+9)]; // Vincenzo Librandi, Sep 24 2012
-
(Prime[Range[5, 100]] - 9)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[0, 200], PrimeQ[2 # + 9]&] (* Vincenzo Librandi, Sep 24 2012 *)
-
is(n)=isprime(2*n+9) \\ Charles R Greathouse IV, Jul 12 2016
-
[n for n in (0..200) if is_prime(2*n+9) ] # G. C. Greubel, May 21 2019
A154685
Triangle read by rows: T(n, k) = 2*n*k + n + k + 4.
Original entry on oeis.org
8, 11, 16, 14, 21, 28, 17, 26, 35, 44, 20, 31, 42, 53, 64, 23, 36, 49, 62, 75, 88, 26, 41, 56, 71, 86, 101, 116, 29, 46, 63, 80, 97, 114, 131, 148, 32, 51, 70, 89, 108, 127, 146, 165, 184, 35, 56, 77, 98, 119, 140, 161, 182, 203, 224, 38, 61, 84, 107, 130, 153, 176, 199, 222, 245, 268
Offset: 1
Triangle begins:
8;
11, 16;
14, 21, 28;
17, 26, 35, 44;
20, 31, 42, 53, 64;
23, 36, 49, 62, 75, 88;
26, 41, 56, 71, 86, 101, 116;
29, 46, 63, 80, 97, 114, 131, 148;
32, 51, 70, 89, 108, 127, 146, 165, 184;
35, 56, 77, 98, 119, 140, 161, 182, 203, 224;
-
A154685:= func< n,k | 2*n*k+n+k+4 >;
[A154685(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jan 21 2025
-
Flatten@Table[2*n*m+m+n+4,{n,20},{m,n}] (* Vincenzo Librandi, Jan 29 2012 *)
-
for(m=1,9,for(n=1,m,print1(2*m*n+m+n+4", "))) \\ Charles R Greathouse IV, Dec 27 2011
-
def A154685(n,k): return 2*n*k+n+k+4
print(flatten([[A154685(n,k) for k in range(1,n+1)] for n in range(1,16)])) # G. C. Greubel, Jan 21 2025
A155723
Numbers k such that 2*k + 9 is not prime.
Original entry on oeis.org
0, 3, 6, 8, 9, 12, 13, 15, 18, 20, 21, 23, 24, 27, 28, 30, 33, 34, 36, 38, 39, 41, 42, 43, 45, 48, 51, 53, 54, 55, 56, 57, 58, 60, 62, 63, 66, 67, 68, 69, 72, 73, 75, 76, 78, 80, 81, 83, 84, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 108, 111, 113, 114
Offset: 1
Distribution of the terms in the following triangular array:
0;
3, 8;
6, 13, 20;
9, 18, 27, 36;
12, 23, 34, 45, 56;
15, 28, 41, 54, 67, 80;
18, 33, 48, 63, 78, 93, 108;
21, 38, 55, 72, 89, 106, 123, 140;
24, 43, 62, 81, 100, 119, 138, 157, 176;
27, 48, 69, 90, 111, 132, 153, 174, 195, 216;
30, 53, 76, 99, 122, 145, 168, 191, 214, 237, 260;
33, 58, 83, 108, 133, 158, 183, 208, 233, 258, 283, 308;
36, 63, 90, 117, 144, 171, 198, 225, 252, 279, 306, 333, 360;
etc.
the values of (2*h*k + k + h - 4) with h >= k >= 1. - _Vincenzo Librandi_, Jan 16 2013
A162261
a(n) = (2*n^3 + 5*n^2 - 7*n)/2.
Original entry on oeis.org
0, 11, 39, 90, 170, 285, 441, 644, 900, 1215, 1595, 2046, 2574, 3185, 3885, 4680, 5576, 6579, 7695, 8930, 10290, 11781, 13409, 15180, 17100, 19175, 21411, 23814, 26390, 29145, 32085, 35216, 38544, 42075, 45815, 49770, 53946, 58349, 62985, 67860
Offset: 1
-
[(2*n^3 + 5*n^2 - 7*n)/2 : n in [1..50]]; // Wesley Ivan Hurt, May 07 2021
-
CoefficientList[Series[x*(11-5*x)/(1-x)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 11, 39, 90}, 50](* Vincenzo Librandi, Mar 04 2012 *)
-
def A162261(n): return n*(2*pow(n,2) +5*n -7)//2
print([A162261(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025
A324937
Triangle read by rows: T(n, k) = 2*n*k + n + k - 8.
Original entry on oeis.org
-4, -1, 4, 2, 9, 16, 5, 14, 23, 32, 8, 19, 30, 41, 52, 11, 24, 37, 50, 63, 76, 14, 29, 44, 59, 74, 89, 104, 17, 34, 51, 68, 85, 102, 119, 136, 20, 39, 58, 77, 96, 115, 134, 153, 172, 23, 44, 65, 86, 107, 128, 149, 170, 191, 212, 26, 49, 72, 95, 118, 141, 164, 187, 210, 233, 256
Offset: 1
Triangle begins:
-4;
-1, 4;
2, 9, 16;
5, 14, 23, 32;
8, 19, 30, 41, 52;
11, 24, 37, 50, 63, 76;
14, 29, 44, 59, 74, 89, 104;
17, 34, 51, 68, 85, 102, 119, 136;
20, 39, 58, 77, 96, 115, 134, 153, 172; etc.
-
[2*n*k+n+k-8: k in [1..n], n in [1..11]]; /* As triangle */ [[2*n*k+n+k-8: k in [1..n]]: n in [1.. 15]];
-
t[n_, k_]:=2 n k + n + k - 8; Table[t[n, k], {n, 11}, {k, n}]//Flatten
Showing 1-5 of 5 results.
Comments