cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A155722 Numbers k such that 2*k + 9 is prime.

Original entry on oeis.org

1, 2, 4, 5, 7, 10, 11, 14, 16, 17, 19, 22, 25, 26, 29, 31, 32, 35, 37, 40, 44, 46, 47, 49, 50, 52, 59, 61, 64, 65, 70, 71, 74, 77, 79, 82, 85, 86, 91, 92, 94, 95, 101, 107, 109, 110, 112, 115, 116, 121, 124, 127, 130, 131, 134, 136, 137, 142, 149, 151, 152, 154, 161, 164
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2009

Keywords

Comments

Subsequence of A001651; A011655(a(n)) = 1. - Reinhard Zumkeller, Jul 09 2010
One less than the associated entry in A105760, two less than in A089038, three less than in A067076. - R. J. Mathar, Jan 05 2011

Crossrefs

Numbers h such that 2*h + k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), this seq (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).

Programs

Extensions

Edited by N. J. A. Sloane, Jun 23 2010
Definition clarified by Zak Seidov, Jul 11 2014

A154685 Triangle read by rows: T(n, k) = 2*n*k + n + k + 4.

Original entry on oeis.org

8, 11, 16, 14, 21, 28, 17, 26, 35, 44, 20, 31, 42, 53, 64, 23, 36, 49, 62, 75, 88, 26, 41, 56, 71, 86, 101, 116, 29, 46, 63, 80, 97, 114, 131, 148, 32, 51, 70, 89, 108, 127, 146, 165, 184, 35, 56, 77, 98, 119, 140, 161, 182, 203, 224, 38, 61, 84, 107, 130, 153, 176, 199, 222, 245, 268
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Comments

The terms form a subset of A153039 because 2*T(n, k) - 7 = (2*n+1)*(2*k+1) are not prime.

Examples

			Triangle begins:
   8;
  11, 16;
  14, 21, 28;
  17, 26, 35, 44;
  20, 31, 42, 53,  64;
  23, 36, 49, 62,  75,  88;
  26, 41, 56, 71,  86, 101, 116;
  29, 46, 63, 80,  97, 114, 131, 148;
  32, 51, 70, 89, 108, 127, 146, 165, 184;
  35, 56, 77, 98, 119, 140, 161, 182, 203, 224;
		

Crossrefs

Cf. A151675 (row sums).
Similar triangle: A155724.
Columns k: A016789 (k=1), A016861 (k=2).
Main diagonal: A137882, A271649.

Programs

Formula

Sum_{k=1..n} T(n, k) = A151675(n). - N. J. A. Sloane, May 31 2009
T(n, k) = A155724(n,k) + 8. - L. Edson Jeffery, Oct 12 2012
From G. C. Greubel, Jan 21 2025: (Start)
T(2*n-1, n) = 4*n^2 + n + 3.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1/4)*(9*(1-(-1)^n) + 2*(2-3*(-1)^n)*n - 4*(-1)^n*n^2).
G.f.: x*y*(8 - 5*(x+y) + 4*x*y)/((1-x)*(1-y))^2.
E.g.f.: 4 - (4+x)*exp(x) - (4+y)*exp(y) + (4+x+y+2*x*y)*exp(x+y).
(End)

Extensions

Clarified comment. - R. J. Mathar, Jan 24 2009

A155723 Numbers k such that 2*k + 9 is not prime.

Original entry on oeis.org

0, 3, 6, 8, 9, 12, 13, 15, 18, 20, 21, 23, 24, 27, 28, 30, 33, 34, 36, 38, 39, 41, 42, 43, 45, 48, 51, 53, 54, 55, 56, 57, 58, 60, 62, 63, 66, 67, 68, 69, 72, 73, 75, 76, 78, 80, 81, 83, 84, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 108, 111, 113, 114
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2009

Keywords

Comments

2*A155724(m,n) + 9 = (2n+1)*(2m+1) are not prime and create entries of this form. Also, one less than the associate entry in A153053, two less than the associated A153052. - R. J. Mathar, Jan 05 2011

Examples

			Distribution of the terms in the following triangular array:
   0;
   3,  8;
   6, 13, 20;
   9, 18, 27,  36;
  12, 23, 34,  45,  56;
  15, 28, 41,  54,  67,  80;
  18, 33, 48,  63,  78,  93, 108;
  21, 38, 55,  72,  89, 106, 123, 140;
  24, 43, 62,  81, 100, 119, 138, 157, 176;
  27, 48, 69,  90, 111, 132, 153, 174, 195, 216;
  30, 53, 76,  99, 122, 145, 168, 191, 214, 237, 260;
  33, 58, 83, 108, 133, 158, 183, 208, 233, 258, 283, 308;
  36, 63, 90, 117, 144, 171, 198, 225, 252, 279, 306, 333, 360;
  etc.
the values of (2*h*k + k + h - 4) with h >= k >= 1. - _Vincenzo Librandi_, Jan 16 2013
		

Crossrefs

Programs

A162261 a(n) = (2*n^3 + 5*n^2 - 7*n)/2.

Original entry on oeis.org

0, 11, 39, 90, 170, 285, 441, 644, 900, 1215, 1595, 2046, 2574, 3185, 3885, 4680, 5576, 6579, 7695, 8930, 10290, 11781, 13409, 15180, 17100, 19175, 21411, 23814, 26390, 29145, 32085, 35216, 38544, 42075, 45815, 49770, 53946, 58349, 62985, 67860
Offset: 1

Views

Author

Vincenzo Librandi, Jun 29 2009

Keywords

Crossrefs

Programs

  • Magma
    [(2*n^3 + 5*n^2 - 7*n)/2 : n in [1..50]]; // Wesley Ivan Hurt, May 07 2021
    
  • Mathematica
    CoefficientList[Series[x*(11-5*x)/(1-x)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 11, 39, 90}, 50](* Vincenzo Librandi, Mar 04 2012 *)
  • Python
    def A162261(n): return n*(2*pow(n,2) +5*n -7)//2
    print([A162261(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025

Formula

Row sums from A155724: a(n) = Sum_{m=1..n} (2*m*n + m + n - 4).
From Vincenzo Librandi, Mar 04 2012: (Start)
G.f.: x^2*(11 - 5*x)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
a(n) = A151675(n) - 8*n. - L. Edson Jeffery, Oct 12 2012
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=2} 1/a(n) = 8*log(2)/63 + 1166/19845.
Sum_{n>=2} (-1)^n/a(n) = (32*log(2) - 2*Pi - 3566/315)/63. (End)
E.g.f.: (1/2)*x^2*(11 + 2*x)*exp(x). - G. C. Greubel, Jan 21 2025

Extensions

New name from Vincenzo Librandi, Mar 04 2012

A324937 Triangle read by rows: T(n, k) = 2*n*k + n + k - 8.

Original entry on oeis.org

-4, -1, 4, 2, 9, 16, 5, 14, 23, 32, 8, 19, 30, 41, 52, 11, 24, 37, 50, 63, 76, 14, 29, 44, 59, 74, 89, 104, 17, 34, 51, 68, 85, 102, 119, 136, 20, 39, 58, 77, 96, 115, 134, 153, 172, 23, 44, 65, 86, 107, 128, 149, 170, 191, 212, 26, 49, 72, 95, 118, 141, 164, 187, 210, 233, 256
Offset: 1

Views

Author

Vincenzo Librandi, Mar 25 2019

Keywords

Examples

			Triangle begins:
  -4;
  -1, 4;
   2, 9,  16;
   5, 14, 23, 32;
   8, 19, 30, 41, 52;
  11, 24, 37, 50, 63, 76;
  14, 29, 44, 59, 74, 89,  104;
  17, 34, 51, 68, 85, 102, 119, 136;
  20, 39, 58, 77, 96, 115, 134, 153, 172;  etc.
		

Crossrefs

Similar sequence T(n,k) = 2*n*k+n+k-h: A144562 (h=1); A154680 (h=2); A154684 (h=3); A155724 (h=4); A155546 (h=5); A155550 (h=6); A144670 (h=7); this sequence (h=8); A155551 (h=9).

Programs

  • Magma
    [2*n*k+n+k-8: k in [1..n], n in [1..11]]; /* As triangle */ [[2*n*k+n+k-8: k in [1..n]]: n in [1.. 15]];
  • Mathematica
    t[n_, k_]:=2 n k + n + k - 8; Table[t[n, k], {n, 11}, {k, n}]//Flatten

Formula

G.f.: x*y*(9*x^3*y^2 - 4*x^2*y*(5 + 2*y) + x*(7 + 16*y) - 4)/((1 - x)^2*(1 - x*y)^3). - Stefano Spezia, Jul 29 2025
Showing 1-5 of 5 results.