cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A151753 Leading digits of A151752.

Original entry on oeis.org

5, 7, 3, 9, 5, 3, 3, 9, 1, 3, 7, 7, 3, 7, 7, 5, 1, 5, 7, 9, 3, 7, 3, 3, 9, 9, 9, 5, 3, 7, 1, 7, 9, 5, 7, 9, 3, 1, 3, 9, 5, 7, 5, 5, 7, 7, 1, 1, 3, 1, 9, 5, 9, 1, 9, 5, 5, 7, 7, 7, 7, 7, 9, 7, 9, 9, 7, 7, 3, 3, 5, 9, 7, 7, 1, 1, 5, 9, 7, 1, 5, 1, 7, 5, 9, 1, 7, 9, 3, 5, 3, 9, 1, 7, 9, 9, 1, 9, 9, 1, 5, 3, 7, 5, 9
Offset: 1

Views

Author

Max Alekseyev, Jun 17 2009

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k, l; if n=1 then b(1):= 5; 5 else a(n-1); l:= b(n-1); for k from 1 to 9 by 2 while (parse(cat(k, l)) mod 5^n)<>0 do od; b(n):= parse(cat(k, l)); k fi end:
    seq(a(n), n=1..120); # Alois P. Heinz, Jun 18 2009

Formula

a(n) = A000030(A151752(n)). - Omar E. Pol, Jul 04 2019

Extensions

More terms from Alois P. Heinz, Jun 18 2009

A151754 Number of n-digit numbers that are divisible by 5^n.

Original entry on oeis.org

1, 3, 7, 14, 28, 57, 115, 230, 460, 921, 1843, 3686, 7372, 14745, 29491, 58982, 117964, 235929, 471859, 943718, 1887436, 3774873, 7549747, 15099494, 30198988, 60397977, 120795955, 241591910, 483183820, 966367641, 1932735283, 3865470566, 7730941132, 15461882265
Offset: 1

Views

Author

Robert G. Wilson v, Jun 17 2009

Keywords

Examples

			a(1)=1 because 5 divides only 5,
a(2)=3 because 25 divides {25, 50 & 75},
a(3)=7 because 125 divides {125, 250, 375, 500, 625, 750 & 925}, etc.
		

Crossrefs

Cf. A151752.

Programs

  • Mathematica
    f[n_] := Floor[(10^n - 1)/5^n] - Floor[10^(n - 1)/5^n]; Array[f, 35]
    LinearRecurrence[{3,-3,3,-2},{1,3,7,14},30] (* Harvey P. Dale, Feb 20 2016 *)

Formula

Limit_{n -> oo} a(n+1)/a(n) = 2.
a(n) = [(9/10)*2^n]. - David W. Wilson, Jun 18 2009
G.f.: x * ( 1+x^2-x^3 ) / ( (x-1)*(2*x-1)*(x^2+1) ). - R. J. Mathar, Feb 20 2011
Showing 1-2 of 2 results.