A151817 a(n) = 2*(2*n)!/n!.
2, 4, 24, 240, 3360, 60480, 1330560, 34594560, 1037836800, 35286451200, 1340885145600, 56317176115200, 2590590101299200, 129529505064960000, 6994593273507840000, 405686409863454720000, 25152557411534192640000, 1660068789161256714240000, 116204815241287969996800000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..364
- Sela Fried and Toufik Mansour, Random walk labelings of perfect trees and other graphs, arXiv:2308.00315 [math.CO], 2023.
Programs
-
Mathematica
Table[2*(2*n)!/n!, {n, 0, 50}] (* G. C. Greubel, Feb 21 2017 *)
-
PARI
a(n)=2*(2*n)!/n! \\ Charles R Greathouse IV, Dec 05 2011
Formula
From Alexander R. Povolotsky, Jul 06 2009: (Start)
a(n) = 2^(2*n + 1)* Pochhammer(1/2, n).
a(n) = 2^(2*n + 1)*Gamma(n + 1/2) / Gamma(1/2) = 2^(2*n+1)*Gamma(n+1/2)/sqrt(Pi).
a(n) = 2*(2*n - 1)*a(n-1). (End) [Updated by Peter Luschny, Aug 02 2023]
E.g.f.: 2/(1-4*x)^(1/2).- Sergei N. Gladkovskii, Dec 05 2011
G.f.: G(0), where G(k)= 1 + 1/(1 - x*(4*k+2)/(x*(4*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
a(n) = A052718(n+1), n>0.
a(n) = 2*A001813(n). - R. J. Mathar, Mar 12 2017
Extensions
Typo in definition corrected by N. J. A. Sloane, Jul 12 2009
New name from Sergei N. Gladkovskii, Dec 05 2011
Comments