cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A151830 Number of fixed 4-dimensional polycubes with n cells.

Original entry on oeis.org

1, 4, 28, 234, 2162, 21272, 218740, 2323730, 25314097, 281345096, 3178474308, 36400646766, 421693622520, 4933625049464, 58216226287844, 692095652493483
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

References

  • G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229.
  • G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.
  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
  • R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275.
  • S. Luther and S. Mertens, Counting lattice animals in high dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546-565.

Crossrefs

Extensions

a(16) from Luther and Mertens by Gill Barequet, Jun 12 2011

A151832 Number of fixed 6-dimensional polycubes with n cells.

Original entry on oeis.org

1, 6, 66, 901, 13881, 231008, 4057660, 74174927, 1398295989, 27012396022, 532327974882, 10665521789203, 216696065279573, 4455636282185802, 92567760074841818
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

References

  • Anthony J. Guttmann, editor. Polygons, Polyominoes and Polycubes, volume 775 of Lecture Notes in Physics. Springer-Verlag, Heidelberg, 2009.

Crossrefs

Programs

Formula

a(n) = A048667(n)/n. - Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A048667.

Extensions

a(10) from Gadi Aleksandrowicz (gadial(AT)gmail.com), Mar 21 2010
a(11)-a(15) from Luther and Mertens by Gill Barequet, Jun 12 2011
a(13) corrected by M. F. Hasler, Jun 26 2025

A151833 Number of fixed 7-dimensional polycubes with n cells.

Original entry on oeis.org

1, 7, 91, 1484, 27468, 551313, 11710328, 259379101, 5933702467, 139272913892, 3338026689018, 81406063278113, 2014611366114053, 50486299825273271
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

References

  • G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229.
  • G. Aleksandrowicz and G. Barequet, Counting polycubes without the dimensionality curse, Discrete Mathematics, 309 (2009), 4576-4583.
  • G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.
  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
  • R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275.
  • S. Luther and S. Mertens, Counting lattice animals in high dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546-565.

Crossrefs

Programs

Formula

a(n) = A048668(n)/n. - Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A048668.

Extensions

More terms from Gadi Aleksandrowicz (gadial(AT)gmail.com), Mar 21 2010
a(11)-a(14) from Luther and Mertens by Gill Barequet, Jun 12 2011

A151834 Number of fixed 8-dimensional polycubes with n cells.

Original entry on oeis.org

1, 8, 120, 2276, 49204, 1156688, 28831384, 750455268, 20196669078, 558157620384, 15762232227968, 453181069339660, 13228272325440164, 391166062869849024
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

Comments

a(1)-a(10) can be computed by formulas in Barequet et al. (2010). Luther and Mertens confirm these values (and add two more) by direct counting.

Crossrefs

Extensions

More terms from Gadi Aleksandrowicz (gadial(AT)gmail.com), Mar 21 2010
a(9)-a(12) from Luther and Mertens by Gill Barequet, Jun 12 2011
a(13)-a(14) from Mertens added by Andrey Zabolotskiy, Jan 29 2023

A151835 Number of fixed 9-dimensional polycubes with n cells.

Original entry on oeis.org

1, 9, 153, 3309, 81837, 2205489, 63113061, 1887993993, 58441956579, 1858846428437, 60445700665383, 2001985304489169, 67341781440810531, 2295424989986481345
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

Comments

a(1)-a(10) can be computed by formulas in Barequet et al. (2010). Luther and Mertens confirm these values (and add two more) by direct counting.

Crossrefs

Extensions

a(5)-a(12) from Luther and Mertens by Gill Barequet, Jun 12 2011
a(13)-a(14) from Mertens added by Andrey Zabolotskiy, Jan 29 2023

A385291 Square array read by descending antidiagonals: A(n,k) is the number of fixed n-dimensional polyominoes of size k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 19, 15, 4, 1, 1, 63, 86, 28, 5, 1, 1, 216, 534, 234, 45, 6, 1, 1, 760, 3481, 2162, 495, 66, 7, 1, 1, 2725, 23502, 21272, 6095, 901, 91, 8, 1, 1, 9910, 162913, 218740, 80617, 13881, 1484, 120, 9, 1, 1, 36446, 1152870, 2323730, 1121075, 231008, 27468, 2276, 153, 10, 1
Offset: 1

Views

Author

John Mason, Jun 24 2025

Keywords

Examples

			The top corner of the array (size on horizontal axis, dimensions on vertical):
          1: 1  1    1     1       1         1           1
(A001168) 2: 1  2    6    19      63       216         760
(A001931) 3: 1  3   15    86     534      3481       23502
(A151830) 4: 1  4   28   234    2162     21272      218740
(A151831) 5: 1  5   45   495    6095     80617     1121075
(A151832) 6: 1  6   66   901   13881    231008     4057660
(A151833) 7: 1  7   91  1484   27468    551313    11710328
(A151834) 8: 1  8  120  2276   49204   1156688    28831384
(A151835) 9: 1  9  153  3309   81837   2205489    63113061
         10: 1 10  190  4615  128515   3906184   126210640
         11: 1 11  231  6226  192786   6524265   234919234
         12: 1 12  276  8174  278598  10389160   412504236
         13: 1 13  325 10491  390299  15901145   690185431
         14: 1 14  378 13209  532637  23538256  1108774772
         15: 1 15  435 16360  710760  33863201  1720467820
         16: 1 16  496 19976  930216  47530272  2590788848
         17: 1 17  561 24089 1196953  65292257  3800689609
         18: 1 18  630 28731 1517319  88007352  5448801768
         19: 1 19  703 33934 1898062 116646073  7653842998
         20: 1 20  780 39730 2346330 152298168 10557176740
         21: 1 21  861 46151 2869671 196179529 14325525627
         22: 1 22  946 53229 3476033 249639104 19153838572
         23: 1 23 1035 60996 4173764 314165809 25268311520
         24: 1 24 1128 69484 4971612 391395440 32929561864
		

Crossrefs

Cf. A000384 (column k=3), A195739.
Rows: A000012 (n=1), A001168 (n=2), A001931 (n=3), A151830 (n=4), A151831 (n=5), A151832 (n=6), A151833 (n=7), A151834 (n=8), A151835 (n=9).

Formula

A(n,k) = Sum_{d=0..n} binomial(n,d)*A195739(k,d) (with A195739(k,d) = 0 for k <= d). - Pontus von Brömssen, Jun 28 2025

Extensions

a(56)-a(66) from Pontus von Brömssen, Jun 28 2025

A048666 Number of rooted 5-dimensional "polycubes" with n cells, with no symmetries removed.

Original entry on oeis.org

1, 10, 135, 1980, 30475, 483702, 7847525, 129419240, 2161766520, 36481155310, 620845213890, 10640356142700, 183453873965570, 3179310190998270, 55345614317169210
Offset: 1

Views

Author

Keywords

Crossrefs

Row 5 of A048790.

Formula

a(n) = n * A151831(n). - Andrew Howroyd, Dec 05 2018

Extensions

a(9)-a(15) from Andrew Howroyd, Dec 05 2018
Showing 1-7 of 7 results.