A385581 Square array read by antidiagonals: T(n,d) is the number of fixed d-dimensional polysticks of size n.
1, 2, 1, 3, 6, 1, 4, 15, 22, 1, 5, 28, 95, 88, 1, 6, 45, 252, 681, 372, 1, 7, 66, 525, 2600, 5277, 1628, 1, 8, 91, 946, 7065, 29248, 43086, 7312, 1, 9, 120, 1547, 15696, 104097, 349132, 365313, 33466, 1, 10, 153, 2360, 30513, 285828, 1632915, 4351944, 3186444, 155446, 1
Offset: 1
Examples
Table begins: n\d| 1 2 3 4 5 6 7 8 ---+--------------------------------------------------------------------- 1 | 1 2 3 4 5 6 7 8 2 | 1 6 15 28 45 66 91 120 3 | 1 22 95 252 525 946 1547 2360 4 | 1 88 681 2600 7065 15696 30513 53936 5 | 1 372 5277 29248 104097 285828 661549 1356384 6 | 1 1628 43086 349132 1632915 5551480 15314936 36449288 7 | 1 7312 365313 4351944 26817465 113045832 372033993 1028383408 8 | 1 33466 3186444 56062681 456137580 2386821009 9377038237 30118187174
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..153 (first 17 antidiagonals)
- Stephan Mertens and Cristopher Moore, Series expansion of the percolation threshold on hypercubic lattices, J. Phys. A: Math. Theor., 51 (2018), 475001; arXiv:1805.02701 [cond-mat.stat-mech], 2018.
- Index entries for sequences related to polyominoes.
Comments