A151842 a(3n) = n, a(3n+1) = 2n+1, a(3n+2) = n+1.
0, 1, 1, 1, 3, 2, 2, 5, 3, 3, 7, 4, 4, 9, 5, 5, 11, 6, 6, 13, 7, 7, 15, 8, 8, 17, 9, 9, 19, 10, 10, 21, 11, 11, 23, 12, 12, 25, 13, 13, 27, 14, 14, 29, 15, 15, 31, 16, 16, 33, 17, 17, 35, 18, 18, 37, 19, 19, 39, 20, 20, 41, 21, 21, 43, 22, 22, 45, 23, 23, 47
Offset: 0
Examples
G.f. = x + x^2 + x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 5*x^7 + 3*x^8 + 3*x^9 + ... - _Michael Somos_, Aug 12 2009
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Programs
-
Magma
I:=[0,1,1,1,3,2]; [n le 6 select I[n] else 2*Self(n-3)-Self(n-6): n in [1..80]]; // Vincenzo Librandi, Feb 14 2015
-
Mathematica
CoefficientList[Series[x (1 + x) (1 + x^2) / ((x - 1)^2 (1 + x + x^2)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Feb 14 2015 *)
-
PARI
{a(n) = kronecker(9, n) + (n\3) * [1, 2, 1][n%3 + 1]} /* Michael Somos, Aug 12 2009 */
-
Python
def pairup(x): return [x[i:i+2] for i in range(len(x)-1)] def combine(vals): return sum(vals) def expand(L,fn): return [(x[0],fn(x),x[1]) for x in pairup(L)] L = list(range(20)) print(expand(L,combine))
Formula
From R. J. Mathar, Jul 14 2009: (Start)
G.f.: x*(1+x)*(1+x^2)/((x-1)^2*(1+x+x^2)^2).
a(n) = 2*a(n-3) - a(n-6). (End)
From Michael Somos, Aug 12 2009: (Start)
G.f.: x * (1 - x^4) / ((1 - x) * (1 - x^3)^2).
Euler transform of length 4 sequence [ 1, 0, 2, -1]. (End)
-a(n) = a(-1-n). - Michael Somos, Nov 11 2013
From Ridouane Oudra, Nov 23 2024: (Start)
a(n) = 5*n/6 + n^2/2 - n^3/3 + (2*n^2 - n - 3/2)*floor(n/3) - (3*n + 3/2)*floor(n/3)^2.
a(n) = t(n+2)*t(n+3) - t(n)*t(n+1), where t(n) = floor(n/3) = A002264(n).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, May 10 2025
Extensions
More terms from Vincenzo Librandi, Feb 14 2015
Comments