cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A293806 a(0) = a(1) = 1; a(n) = [x^n] Product_{k=1..n-1} 1/(1 - x^a(k)).

Original entry on oeis.org

1, 1, 1, 4, 6, 8, 11, 14, 19, 24, 30, 37, 47, 57, 70, 84, 102, 121, 144, 170, 202, 235, 275, 319, 372, 429, 495, 567, 652, 742, 848, 963, 1095, 1237, 1399, 1574, 1775, 1990, 2235, 2499, 2795, 3114, 3473, 3859, 4292, 4755, 5271, 5827, 6444, 7107, 7840, 8625, 9493, 10422, 11444, 12541
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 16 2017

Keywords

Comments

a(n) = number of partitions of n into preceding terms starting from a(1), a(2), a(3), ... (for n > 1).

Examples

			a(4) = 6 because we have [4], [1a, 1a, 1a, 1a], [1a, 1a, 1a, 1b], [1a, 1a, 1b, 1b],  [1a, 1b, 1b, 1b] and [1b, 1b, 1b, 1b].
G.f. = -x - 2*x^2 + 1/((1 - x)*(1 - x)*(1 - x^4)*(1 - x^6)*(1 - x^8)*(1 - x^11)*(1 - x^14)*(1 - x^19)*...) = 1 + x + x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 11*x^6 + 14*x^7 + 19*x^8 + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(a(i)>n, 0, b(n-a(i), i))))
        end:
    a:= n-> `if`(n<2, 1, b(n, n-1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - x^a[k]), {k, 1, n - 1}], {x, 0, n}]; a[0] = a[1] = 1; Table[a[n], {n, 0, 55}]

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = -x - 2*x^2 + Product_{n>=1} 1/(1 - x^a(n)).

A293807 a(0) = a(1) = 1; a(n) = [x^n] Product_{k=1..n-1} 1/(1 - x^a(k))^a(k).

Original entry on oeis.org

1, 1, 1, 4, 9, 14, 19, 24, 39, 63, 87, 111, 155, 235, 329, 423, 552, 771, 1091, 1430, 1825, 2400, 3295, 4392, 5597, 7117, 9367, 12476, 16077, 20182, 25677, 33472, 43406, 54578, 68109, 86475, 111316, 140965, 174836, 217520, 275130, 348555, 433578, 533640, 662620, 831747
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 16 2017

Keywords

Comments

a(n) = number of partitions of n into preceding terms starting from a(1), a(2), a(3), ... (for n > 1), with a(1) type of part a(1), a(2) types of part a(2), ...

Examples

			a(3) = 4 because we have [1a, 1a, 1a], [1a, 1a, 1b], [1a, 1b, 1b] and [1b, 1b, 1b].
G.f. = -x - 2*x^2 + 1/((1 - x)*(1 - x)*(1 - x^4)^4*(1 - x^9)^9*(1 - x^14)^14*(1 - x^19)^19*(1 - x^24)^24*(1 - x^39)^39*...) = 1 + x + x^2 + 4*x^3 + 9*x^4 + 14*x^5 + 19*x^6 + 24*x^7 + 39*x^8 + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-a(i)*j, i-1)*binomial(a(i)+j-1, j), j=0..n/a(i))))
        end:
    a:= n-> `if`(n<2, 1, b(n, n-1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - x^a[k])^a[k], {k, 1, n - 1}], {x, 0, n}]; a[0] = a[1] = 1; Table[a[n], {n, 0, 45}]
  • Python
    from sympy import binomial
    from sympy.core.cache import cacheit
    @cacheit
    def b(n, i): return 1 if n==0 else 0 if i<1 else sum(b(n - a(i)*j, i - 1) * binomial(a(i) + j - 1, j) for j in range(n//a(i) + 1))
    def a(n): return 1 if n<2 else b(n, n - 1)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Dec 13 2017, after Maple code

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = -x - 2*x^2 + Product_{n>=1} 1/(1 - x^a(n))^a(n).

A296387 a(0) = a(1) = 1; a(n) = [x^n] Product_{k=1..n-1} (1 + x^a(k))/(1 - x^a(k)).

Original entry on oeis.org

1, 1, 2, 6, 8, 10, 14, 18, 26, 34, 46, 58, 74, 90, 114, 138, 174, 210, 260, 310, 378, 446, 536, 626, 748, 870, 1034, 1198, 1410, 1622, 1892, 2162, 2510, 2858, 3306, 3754, 4316, 4878, 5576, 6274, 7144, 8014, 9096, 10178, 11508, 12838, 14458, 16078, 18048, 20018, 22410, 24802, 27690, 30578, 34040
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[Product[(1 + x^a[k])/(1 - x^a[k]), {k, 1, n - 1}], {x, 0, n}]; a[0] = a[1] = 1; Table[a[n], {n, 0, 54}]

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = -x - 2*x^2 + Product_{n>=1} (1 + x^a(n))/(1 - x^a(n)).

A300411 a(0) = a(1) = 1; a(n) = [x^n] Product_{k=1..n-1} 1/(1 - a(k)*x^a(k)).

Original entry on oeis.org

1, 1, 1, 4, 9, 14, 19, 24, 45, 75, 105, 135, 229, 359, 503, 647, 1047, 1591, 2272, 2972, 4696, 6996, 9844, 12894, 20064, 29538, 41204, 54407, 84457, 123723, 171757, 225939, 348643, 508693, 703815, 923529, 1423892, 2076942, 2870977, 3763380, 5778379, 8414332, 11621307
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - a[k] x^a[k]), {k, 1, n - 1}], {x, 0, n}]; a[0] = a[1] = 1; Table[a[n], {n, 0, 42}]

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = -x - 2*x^2 + Product_{n>=1} 1/(1 - a(n)*x^a(n)).

A307545 G.f. A(x) satisfies: A(x) = 1/(1 - x^a(0) - x^a(1) - x^a(2) - x^a(3) - ...) - x.

Original entry on oeis.org

1, 1, 4, 8, 17, 36, 76, 160, 338, 714, 1508, 3184, 6723, 14196, 29976, 63296, 133653, 282217, 595920, 1258324, 2657032, 5610494, 11846920, 25015536, 52821917, 111536883, 235517320, 497310008, 1050102149, 2217358398, 4682095232, 9886545984, 20876079330, 44081187594, 93080269957
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 8*x^3 + 17*x^4 + 36*x^5 + 76*x^6 + 160*x^7 + 338*x^8 + ... = 1/(1 - 2*x - x^4 - x^8 - x^17 - x^36 - x^76 - x^160 - x^338 - ...) - x.
		

Crossrefs

A339246 a(n) = 1 for n <= 2; thereafter a(n) is the number of partitions of n where every part k appears at least a(k) times.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 5, 7, 8, 10, 11, 15, 16, 20, 23, 28, 31, 38, 41, 50, 56, 66, 72, 86, 94, 110, 122, 140, 154, 178, 195, 223, 245, 276, 303, 344, 376, 421, 461, 513, 561, 627, 681, 756, 824, 909, 988, 1092, 1182, 1301, 1413, 1547, 1673, 1834, 1979, 2165, 2341, 2548, 2746, 2993
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2020

Keywords

Examples

			a(0) = a(1) = a(2) = 1: by definition.
a(3) = 2: [2, 1], [1, 1, 1].
a(4) = 3: [2, 2], [2, 1, 1], [1, 1, 1, 1].
a(5) = 3: [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1].
a(6) = 5: [3, 3], [2, 2, 2], [2, 2, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1].
		

Crossrefs

Formula

G.f.: -x^2 + Product_{k>=1} (1 + x^(a(k)*k) / (1 - x^k)).
Showing 1-6 of 6 results.