cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151961 Semiperimeter of the n-th Heronian triangle.

Original entry on oeis.org

3, 6, 21, 78, 291, 1086, 4053, 15126, 56451, 210678, 786261, 2934366, 10951203, 40870446, 152530581, 569251878, 2124476931, 7928655846, 29590146453, 110431929966, 412137573411, 1538118363678, 5740335881301, 21423225161526, 79952564764803, 298387033897686
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 13 2009

Keywords

Comments

The side lengths are consecutive integers (A016064) and the area is an integer (A011945).
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 27 = 0. - Colin Barker, Feb 08 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 432 = 0. - Colin Barker, Feb 16 2014

Crossrefs

Programs

  • Magma
    I:=[3,6]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 11 2014
    
  • Mathematica
    CoefficientList[Series[3(1-2x)/(1-4x+x^2), {x,0,30}], x] (* Vincenzo Librandi, Feb 11 2014 *)
    3*ChebyshevT[Range[0, 40], 2] (* G. C. Greubel, Oct 10 2022 *)
    LinearRecurrence[{4,-1},{3,6},30] (* Harvey P. Dale, Dec 21 2022 *)
  • PARI
    Vec(3*x*(1-2*x)/(1-4*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015
    
  • SageMath
    [3*chebyshev_T(n, 2) for n in range(41)] # G. C. Greubel, Oct 10 2022

Formula

a(n) = 3 * A001075(n-1). - Joerg Arndt, Oct 10 2022
a(n) = 3*(A016064(n-1) + 1)/2 = 3*A003500(n-1)/2. - R. J. Mathar, Jul 27 2009
From Colin Barker, Mar 30 2012: (Start)
a(n) = 4*a(n-1) - a(n-2).
G.f.: 3*x*(1-2*x)/(1-4*x+x^2). (End)
a(n) = 3*( (2+sqrt(3))*(2-sqrt(3))^n + (2-sqrt(3))*(2+sqrt(3))^n )/2. - Colin Barker, Oct 12 2015

Extensions

More terms from R. J. Mathar, Jul 27 2009