A151977 Numbers that are congruent to {0, 1} mod 16.
0, 1, 16, 17, 32, 33, 48, 49, 64, 65, 80, 81, 96, 97, 112, 113, 128, 129, 144, 145, 160, 161, 176, 177, 192, 193, 208, 209, 224, 225, 240, 241, 256, 257, 272, 273, 288, 289, 304, 305, 320, 321, 336, 337, 352, 353, 368, 369, 384, 385, 400, 401, 416, 417, 432, 433, 448, 449
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Cf. A321212.
Programs
-
Magma
[(32*n-14*(-1)^n-46)/4: n in [1..60]]; // Vincenzo Librandi, Jul 11 2012
-
Mathematica
CoefficientList[Series[x*(1+15*x)/((1+x)(1-x)^2),{x,0,60}],x] (* Vincenzo Librandi, Jul 11 2012 *) LinearRecurrence[{1,1,-1},{0,1,16},80] (* Harvey P. Dale, Jul 24 2021 *)
-
PARI
forstep(n=0,200,[1,15],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
-
PARI
a(n) = (16*n - 7*(-1)^n - 23)/2 \\ David Lovler, Aug 18 2022
Formula
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(k)=2^(k+3) for k > 0; {b(n)} = 1,16,32,64,128,256,... - Philippe Deléham, Oct 17 2011
G.f.: x^2*(1+15*x)/((1+x)*(1-x)^2). - Vincenzo Librandi, Jul 11 2012
a(n) = (32*n - 14*(-1)^n - 46)/4. - Vincenzo Librandi, Jul 11 2012
From David Lovler, Aug 18 2022: (Start)
a(n) = A321212(n) - 2.
a(n) = a(n-2) + 16.
E.g.f.: 15 + ((16*x - 23)*exp(x) - 7*exp(-x))/2. (End)
Comments