cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151978 Numbers that are congruent to {0, 1} mod 17.

Original entry on oeis.org

0, 1, 17, 18, 34, 35, 51, 52, 68, 69, 85, 86, 102, 103, 119, 120, 136, 137, 153, 154, 170, 171, 187, 188, 204, 205, 221, 222, 238, 239, 255, 256, 272, 273, 289, 290, 306, 307, 323, 324, 340, 341, 357, 358, 374, 375, 391, 392, 408, 409, 425, 426, 442, 443, 459, 460, 476
Offset: 1

Views

Author

N. J. A. Sloane, Aug 23 2009

Keywords

Comments

Numbers n such that n^2 - n is divisible by 17.

Programs

  • Magma
    [n: n in [0..30] | n mod 17 in [0,1]]; // Bruno Berselli, Sep 29 2011
  • Mathematica
    LinearRecurrence[{1,1,-1},{0,1,17},60] (* or *) With[{c=17Range[0,30]}, Sort[Join[c,c+1]]] (* Harvey P. Dale, Oct 04 2011 *)

Formula

From Bruno Berselli, Sep 29 2011: (Start)
G.f.: x^2*(1+16*x)/((1+x)*(1-x)^2).
a(n) = (34*n - 15*(-1)^n - 49)/4.
a(n) = a(n-1) + a(n-2) - a(n-3) = a(n-2) + 17.
a(n) + a(n+1) = a(2n). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1 and b(k) = 17*2^(k-1) for k > 0. - Philippe Deléham, Oct 19 2011

Extensions

Definition rewritten by Bruno Berselli, Sep 29 2011