A151978 Numbers that are congruent to {0, 1} mod 17.
0, 1, 17, 18, 34, 35, 51, 52, 68, 69, 85, 86, 102, 103, 119, 120, 136, 137, 153, 154, 170, 171, 187, 188, 204, 205, 221, 222, 238, 239, 255, 256, 272, 273, 289, 290, 306, 307, 323, 324, 340, 341, 357, 358, 374, 375, 391, 392, 408, 409, 425, 426, 442, 443, 459, 460, 476
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[n: n in [0..30] | n mod 17 in [0,1]]; // Bruno Berselli, Sep 29 2011
-
Mathematica
LinearRecurrence[{1,1,-1},{0,1,17},60] (* or *) With[{c=17Range[0,30]}, Sort[Join[c,c+1]]] (* Harvey P. Dale, Oct 04 2011 *)
Formula
From Bruno Berselli, Sep 29 2011: (Start)
G.f.: x^2*(1+16*x)/((1+x)*(1-x)^2).
a(n) = (34*n - 15*(-1)^n - 49)/4.
a(n) = a(n-1) + a(n-2) - a(n-3) = a(n-2) + 17.
a(n) + a(n+1) = a(2n). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1 and b(k) = 17*2^(k-1) for k > 0. - Philippe Deléham, Oct 19 2011
Extensions
Definition rewritten by Bruno Berselli, Sep 29 2011
Comments