A195047 Concentric 17-gonal numbers.
0, 1, 17, 35, 68, 103, 153, 205, 272, 341, 425, 511, 612, 715, 833, 953, 1088, 1225, 1377, 1531, 1700, 1871, 2057, 2245, 2448, 2653, 2873, 3095, 3332, 3571, 3825, 4081, 4352, 4625, 4913, 5203, 5508, 5815, 6137, 6461, 6800, 7141, 7497, 7855, 8228, 8603, 8993
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{2,0,-2,1},{0,1,17,35},50] (* Harvey P. Dale, Dec 23 2017 *)
-
PARI
a(n)=17*n^2/4+13*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 17*n^2/4+13*((-1)^n-1)/8. [Typo fixed by Ivan Panchenko, Nov 08 2013]
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+15*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069130(n+1). (End)
From Bruno Berselli, Sep 29 2011: (Start)
a(n) = a(-n) = (34*n^2+13*(-1)^n-13)/8.
Sum_{n>=1} 1/a(n) = Pi^2/102 + tan(sqrt(13/17)*Pi/2)*Pi/sqrt(221). - Amiram Eldar, Jan 16 2023
Comments