A151999 Numbers k such that every prime that divides phi(k) also divides k.
1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 32, 34, 36, 40, 42, 48, 50, 54, 60, 64, 68, 72, 78, 80, 84, 90, 96, 100, 102, 108, 110, 114, 120, 126, 128, 136, 144, 150, 156, 160, 162, 168, 170, 180, 192, 200, 204, 210, 216, 220, 222, 228, 234, 240, 250, 252, 256, 270
Offset: 1
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
- Paul Pollack and Carl Pomerance, Prime-Perfect Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 12a, Paper A14, 2012.
- J. Jimenez Urroz and J. Luis A. Yebra, On the equation a^x=x mod b^n, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.8.
Crossrefs
Programs
-
Magma
[n: n in [1..300] | forall{d: d in PrimeDivisors(EulerPhi(n)) | IsIntegral(n/d)}]; // Bruno Berselli, Nov 04 2017
-
Maple
A151999 := proc(n) if n = 1 then 2; else for a from procname(n-1)+1 do pdvs := numtheory[factorset](a) ; aworks := true; for p in numtheory[factorset](a) do for q in numtheory[factorset](p-1) do if a mod q = 0 then ; else aworks := false; end if; end do: end do: if aworks then return a; end if; end do: end if; end proc: # R. J. Mathar, Jun 01 2013
-
Mathematica
Rad[n_]:=Times@@Transpose[FactorInteger[n]][[1]]; Select[1 + Range[300], Mod[Rad[#], Rad[EulerPhi[#]]]==0 &] (* José María Grau Ribas, Jan 09 2012 *)
-
PARI
isok(n) = {fp = factor(n); for (i=1, #fp[, 1], fq = factor(fp[i, 1] - 1); for (j=1, #fq[, 1], if (n % fq[j, 1], return (0)););); return (1);} \\ Michel Marcus, Jun 01 2013
-
PARI
isok(n) = (n % factorback(factor(eulerphi(n))[, 1])) == 0; \\ Michel Marcus, Nov 04 2017
-
Sage
for n in range(1, 271): if euler_phi(n)**2 == euler_phi(euler_phi(n) * n): print(n, end=', ') # Torlach Rush, Oct 01 2024
Extensions
Corrected by Michel Marcus, Jun 01 2013
Edited by N. J. A. Sloane, Jun 02 2013 at the suggestion of Michel Marcus, merging this with A204010
Deleted erroneous comment and added correct b-file by Paolo P. Lava, Nov 06 2017
Comments