A152000 a(n) is squarefree and such that for every prime p|a(n) and every prime q|p-1 then q|a(n) holds.
2, 6, 10, 30, 34, 42, 78, 102, 110, 114, 170, 210, 222, 330, 390, 410, 438, 510, 514, 546, 570, 582, 654, 714, 798, 930, 978, 1010, 1110, 1158, 1218, 1230, 1326, 1482, 1542, 1554, 1806, 1830, 1870, 1938, 2190, 2310, 2510, 2530
Offset: 1
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..10000
- J. Jimenez Urroz and J. Luis A.Yebra, On the equation a^x=x mod b^n, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.8.
Programs
-
Maple
A152000 := proc(n) if n = 1 then 2; else for a from procname(n-1)+1 do if issqrfree(a) then pdvs := numtheory[factorset](a) ; aworks := true; for p in numtheory[factorset](a) do for q in numtheory[factorset](p-1) do if a mod q = 0 then ; else aworks := false; end if; end do: end do: if aworks then return a; end if; end if; end do: end if; end proc: # R. J. Mathar, Jun 01 2013
-
Mathematica
rad[n_] := Times @@ (First@# & /@ FactorInteger@n); Select[Range[2, 2530], # == rad[#*EulerPhi[#]] &] (* Jon Maiga, Aug 08 2019 *)
-
PARI
is(m) = factorback(factorint(m*eulerphi(m))[, 1]) == m && m > 1; \\ Jinyuan Wang, Aug 08 2019
Extensions
Corrected and extended by Michel Marcus, Jun 01 2013
Comments