A152035 Expansion of g.f. (1-2*x^2)/(1-2*x-2*x^2).
1, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, 13376, 36544, 99840, 272768, 745216, 2035968, 5562368, 15196672, 41518080, 113429504, 309895168, 846649344, 2313089024, 6319476736, 17265131520, 47169216512, 128868696064, 352075825152, 961889042432, 2627929735168, 7179637555200, 19615134580736
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2).
Programs
-
Magma
[1] cat [n le 2 select 2^n else 2*(Self(n-1) +Self(n-2)): n in [1..30]]; // G. C. Greubel, Sep 20 2023
-
Maple
a := proc(n) option remember; `if`(n < 3, [1, 2, 4][n+1], 2*(a(n-1) + a(n-2))) end: seq(a(n), n=0..31); # Peter Luschny, Jan 03 2019
-
Mathematica
f[n_] = 2^n*Product[(1 + 2*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; Table[FullSimplify[ExpandAll[f[n]]], {n, 0, 15}] CoefficientList[Series[(1-2x^2)/(1-2x-2x^2),{x,0,40}],x] (* Harvey P. Dale, Sep 23 2014 *) LinearRecurrence[{2,2},{1,2,4},40] (* Harvey P. Dale, May 12 2023 *)
-
SageMath
@CachedFunction def a(n): # a = A152035 if n<3: return (1,2,4)[n] else: return 2*(a(n-1) + a(n-2)) [a(n) for n in range(31)] # G. C. Greubel, Sep 20 2023
Formula
a(n) = 2*(a(n-1) + a(n-2)) for n >= 3. - Peter Luschny, Jan 03 2019
Extensions
More terms from Philippe Deléham, Sep 21 2009
Comments