cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152035 Expansion of g.f. (1-2*x^2)/(1-2*x-2*x^2).

Original entry on oeis.org

1, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, 13376, 36544, 99840, 272768, 745216, 2035968, 5562368, 15196672, 41518080, 113429504, 309895168, 846649344, 2313089024, 6319476736, 17265131520, 47169216512, 128868696064, 352075825152, 961889042432, 2627929735168, 7179637555200, 19615134580736
Offset: 0

Views

Author

Roger L. Bagula, Nov 20 2008

Keywords

Comments

Essentially same as A028860. - Philippe Deléham, Sep 21 2009

Crossrefs

Cf. A028860. Row sums of A322942.

Programs

  • Magma
    [1] cat [n le 2 select 2^n else 2*(Self(n-1) +Self(n-2)): n in [1..30]]; // G. C. Greubel, Sep 20 2023
    
  • Maple
    a := proc(n) option remember;
    `if`(n < 3, [1, 2, 4][n+1], 2*(a(n-1) + a(n-2))) end:
    seq(a(n), n=0..31); # Peter Luschny, Jan 03 2019
  • Mathematica
    f[n_] = 2^n*Product[(1 + 2*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; Table[FullSimplify[ExpandAll[f[n]]], {n, 0, 15}]
    CoefficientList[Series[(1-2x^2)/(1-2x-2x^2),{x,0,40}],x] (* Harvey P. Dale, Sep 23 2014 *)
    LinearRecurrence[{2,2},{1,2,4},40] (* Harvey P. Dale, May 12 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A152035
        if n<3: return (1,2,4)[n]
        else: return 2*(a(n-1) + a(n-2))
    [a(n) for n in range(31)] # G. C. Greubel, Sep 20 2023

Formula

a(n) = 2*(a(n-1) + a(n-2)) for n >= 3. - Peter Luschny, Jan 03 2019

Extensions

Edited by N. J. A. Sloane, Apr 11 2009, based on comments from Philippe Deléham and R. J. Mathar
More terms from Philippe Deléham, Sep 21 2009