cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A102699 Number of strings of length n, using as symbols numbers from the set {1, 2, ..., n}, in which consecutive symbols differ by exactly 1.

Original entry on oeis.org

1, 1, 2, 6, 16, 42, 104, 252, 592, 1370, 3112, 6996, 15536, 34244, 74832, 162616, 351136, 754938, 1615208, 3443940, 7314928, 15493676, 32714992, 68918856, 144815456, 303703972, 635554064, 1327816392, 2769049312, 5766417480, 11989472672, 24897569648
Offset: 0

Views

Author

Don Rogers (donrogers42(AT)aol.com), Feb 07 2005

Keywords

Comments

Equally, number of different n-digit numbers, using only the digits 1 through n, where consecutive digits differ by 1. It is assumed that there are n different digits available even when n > 9.
Number of endomorphisms of a path P_n. - N. J. A. Sloane, Sep 20 2009
a(n) is also the number of distinct paths of length n starting from the bottom row of an n X n chess board and ending at the top row, such that all the n squares traversed in the path are of the same color. - Kiran Ananthpur Bacche, Oct 25 2022

Examples

			For example, a(4)=16: the 16 strings are 1212, 1232, 1234, 2121, 2123, 2321, 2323, 2343, 3212, 3232, 3234, 3432, 3434, 4321, 4323, 4343.
G.f. = x + 2*x^2 + 6*x^3 + 16*x^4 + 42*x^5 + 104*x^6 + 252*x^7 + 592*x^8 + ...
		

Crossrefs

Main diagonal of A220062. - Alois P. Heinz, Dec 03 2012

Programs

  • Maple
    p:= 0; paths := proc(m, n, s, t) global p; if(((t+1) <= m) and s <= (n)) then paths(m,n,s+1,t+1); end if; if(((t-1) > 0) and s <= (n)) then paths(m,n,s+1,t-1); end if; if(s = n) then p:=p+1; end if; end proc; sumpaths:=proc(j) global p; p:=0; sp:=0; for h from 1 to j do p:=0; paths(j,j,1,h); sp:=sp+ p ; end do; sp; end proc; for l from 1 to 50 do sumpaths(l); end do; # Ben Paul Thurston, Oct 04 2006
    # second Maple program:
    a:= proc(n) option remember;
          `if`(n<5, [1, 1, 2, 6, 16][n+1], ((2*n^2-6*n-4) *a(n-1)
          +(56-32*n+4*n^2) *a(n-2) -8*(n-3)^2 *a(n-3))/ ((n-1)*(n-4)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 23 2012
  • Mathematica
    a[n_] := a[n] = If[n <= 4, n*((n-3)*n+4)/2, ((2*n^2 - 6*n - 4)*a[n-1] + (4*n^2 - 32*n + 56)*a[n-2] - 8*(n-3)^2*a[n-3])/((n-1)*(n-4))]; Table[ a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 10 2015, after Alois P. Heinz *)
  • PARI
    x='x+O('x^55); Vec(x*(2*(1-x)-sqrt(1-4*x^2))/(1-2*x)^2) \\ Altug Alkan, Nov 10 2015
    
  • Python
    from math import comb
    def A102699(n): return ((n+1<>1) if n&1 else (n-1)*comb(n-2,n-2>>1)<<2)) if n else 1 # Chai Wah Wu, Oct 28 2024

Formula

It appears that the limit of a(n)/a(n-1) is decreasing towards 2. - Ben Paul Thurston, Oct 04 2006
a(n) = (n+1)2^(n-1) - 4(n-1)binomial(n-2,(n-2)/2) for n even, a(n) = (n+1)2^(n-1) - (2n-1)binomial(n-1,(n-1)/2) for n odd. - Joseph Myers, Dec 23 2008
a(n) = 2 * Sum_{k=1..n-1} k*A110971(n,k). - N. J. A. Sloane, Sep 20 2009
G.f.: x * (2*(1 - x) - sqrt(1 - 4*x^2)) / (1 - 2*x)^2. - Michael Somos, Mar 17 2014
0 = a(n) * 8*n^2 - a(n+1) * 4*(n^2 - 2*n - 1) - a(n+2) * 2*(n^2 + 3*n - 2) + a(n+3) * (n-1)*(n+2) for n>0. - Michael Somos, Mar 17 2014
0 = a(n) * (16*a(n+1) - 16*a(n+2) + 4*a(n+3)) + a(n+1) * (-16*a(n+1) + 20*a(n+2) - 4*a(n+3)) + a(n+2) * (-4*a(n+2) + a(n+3)) for n>0. - Michael Somos, Mar 17 2014

Extensions

More terms from Ben Paul Thurston, Oct 04 2006
a(20) onwards from David Wasserman, Apr 26 2008
Edited by N. J. A. Sloane, Jan 03 2009 and Sep 23 2010
a(0)=1 prepended by Alois P. Heinz, Apr 17 2017

A377000 Array read by ascending antidiagonals: T(n,k) = number of n-esthetic numbers with k digits.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 7, 8, 6, 1, 6, 9, 12, 13, 8, 1, 7, 11, 16, 21, 21, 12, 1, 8, 13, 20, 29, 36, 34, 16, 1, 9, 15, 24, 37, 52, 63, 55, 24, 1, 10, 17, 28, 45, 68, 94, 108, 89, 32, 1, 11, 19, 32, 53, 84, 126, 169, 189, 144, 48, 1, 12, 21, 36, 61, 100, 158, 232, 305, 324, 233, 64, 1
Offset: 2

Views

Author

Paolo Xausa, Oct 12 2024

Keywords

Comments

A number is n-esthetic if, when written in base n, adjacent digits differ by 1: see De Koninck and Doyon (2009), where T(n,k) is denoted by N_q(r).

Examples

			Array begins (cf. De Koninck and Doyon (2009), table on p. 155):
  n\k| 1   2   3   4    5    6    7    8     9    10  ...
  -------------------------------------------------------
   2 | 1,  1,  1,  1,   1,   1,   1,   1,    1,    1, ... = A000012
   3 | 2,  3,  4,  6,   8,  12,  16,  24,   32,   48, ... = A029744 (from n = 2)
   4 | 3,  5,  8, 13,  21,  34,  55,  89,  144,  233, ... = A000045 (from n = 4)
   5 | 4,  7, 12, 21,  36,  63, 108, 189,  324,  567, ... = A228879
   6 | 5,  9, 16, 29,  52,  94, 169, 305,  549,  990, ...
   7 | 6, 11, 20, 37,  68, 126, 232, 430,  792, 1468, ...
   8 | 7, 13, 24, 45,  84, 158, 296, 557, 1045, 1966, ...
   9 | 8, 15, 28, 53, 100, 190, 360, 685, 1300, 2475, ...
  10 | 9, 17, 32, 61, 116, 222, 424, 813, 1556, 2986, ... = A090994
  ...                                               \______ A152086 (main diagonal)
		

Crossrefs

Cf. A000012 (row n = 2), A029744 (row n = 3), A000045 (row n = 4), A228879 (row n = 5), A090994 (row n = 10).
Cf. A102699, A152086 (main diagonal).
Diagonal above the main diagonal appears to be A206603.

Programs

  • Mathematica
    A377000[n_, k_] := Round[2^k/(n+1)*Sum[If[m != (n+1)/2, Cos[#]^k*(Cot[#] + Csc[#])^2 & [Pi*m/(n+1)], 0], {m, 1, n, 2}]];
    Table[A377000[n-k+1, k], {n, 2, 15}, {k, n-1}]
  • Python
    from itertools import count, islice
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A377000_N(q,r,i):
        if r==1 and i==0: return 0
        if r==1: return 1
        if q==2: return r+i&1^1
        if i == 0: return A377000_N(q,r-1,1)
        if i == q-1: return A377000_N(q,r-1,q-2)
        return A377000_N(q,r-1,i-1)+A377000_N(q,r-1,i+1)
    def A377000_T(n,k): return sum(A377000_N(n,k,i) for i in range(n))
    def A377000_gen(): # generator of terms
        for n in count(2):
            for k in range(1,n):
                yield A377000_T(n-k+1,k)
    A377000_list = list(islice(A377000_gen(),100)) # Chai Wah Wu, Oct 21 2024

Formula

All of the following formulas are taken from De Koninck and Doyon (2009).
T(n,k) = 2^k/(n+1) * Sum_{m=1..n, m odd, m != (n+1)/2} cos(p)^k*(cot(p) + csc(p))^2, where p = Pi*m/(n+1).
T(n,1) = n - 1.
T(2,k) = 1.
T(3,k) = 2^((k+1)/2) if k is odd, 3*2^((k-2)/2) if k is even = A029744(k+1).
T(4,k) = A000045(k+3).
T(5,k) = 4*3^((k-1)/2) if k is odd, 7*3^((k-2)/2) if k is even = A228879(k-1).
Conjectures from Chai Wah Wu, Oct 21 2024: (Start)
Conjecture 1: For even n, T(n,k) is the number of meaningful differential operations of the k-th order on the space R^(n-1).
Conjecture 2: For each n, the row T(n,k) satisfies a linear recurrence. For example:
T(6,k) = T(6,k-1) + 2*T(6,k-2) - T(6,k-3) for k > 3 (A090990).
T(7,k) = 4*T(7,k-2) - 2*T(7,k-4) for k > 4.
T(8,k) = T(8,k-1) + 3*T(8,k-2) - 2*T(8,k-3) - T(8,k-4) for k > 4 (A090992).
T(9,k) = 5*T(9,k-2) - 5*T(9,k-4) for k > 4.
T(10,k) = T(10,k-1) + 4*T(10,k-2) - 3*T(10,k-3) - 3*T(10,k-4) + T(10,k-5) for k > 5.
T(11,k) = 6*T(11,k-2) - 9*T(11,k-4) + 2*T(11,k-6) for k > 6.
T(12,k) = T(12,k-1) + 5*T(12,k-2) - 4*T(12,k-3) - 6*T(12,k-4) + 3*T(12,k-5) + T(12,k-6) for k > 6 (A129638).
...
Note that for even n, Conjecture 1 implies Conjecture 2 due to (Malesevic, 1998).
Conjecture 3: T(n,n-2) = A182555(n-2). (End)

A110971 Triangle T(n,k) (n >= 2, 1 <= k <= n-1) read by rows: row n gives epispectrum of a path P_n (see reference for precise definition).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 6, 1, 1, 2, 7, 11, 10, 1, 1, 2, 8, 14, 24, 14, 1, 1, 2, 9, 16, 35, 42, 22, 1, 1, 2, 10, 18, 45, 68, 81, 30, 1, 1, 2, 11, 20, 55, 89, 149, 138, 46, 1, 1, 2, 12, 22, 66, 110, 216, 282, 250, 62, 1, 1, 2, 13, 24, 78, 132, 285, 422, 577, 419
Offset: 2

Views

Author

N. J. A. Sloane, Sep 20 2009

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2,  1;
  1, 2,  4,  1;
  1, 2,  6,  6,  1;
  1, 2,  7, 11, 10,   1;
  1, 2,  8, 14, 24,  14,   1;
  1, 2,  9, 16, 35,  42,  22,   1;
  1, 2, 10, 18, 45,  68,  81,  30,   1;
  1, 2, 11, 20, 55,  89, 149, 138,  46,    1;
  1, 2, 12, 22, 66, 110, 216, 282, 250,   62,   1;
  1, 2, 13, 24, 78, 132, 285, 422, 577,  419,  94,   1;
  1, 2, 14, 26, 91, 156, 364, 568, 945, 1070, 732, 126, 1;
		

Crossrefs

Showing 1-3 of 3 results.