cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152119 a(n) = Product_{k=1..(n-1)/2} (5 + 4*cos(k*Pi/n)^2).

Original entry on oeis.org

1, 1, 1, 6, 7, 41, 48, 281, 329, 1926, 2255, 13201, 15456, 90481, 105937, 620166, 726103, 4250681, 4976784, 29134601, 34111385, 199691526, 233802911, 1368706081, 1602508992, 9381251041, 10983760033, 64300051206, 75283811239
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Nov 24 2008

Keywords

Crossrefs

Cf. A004187 (bisection), A049685 (bisection).

Programs

  • Mathematica
    a = Table[Product[5 + 4*Cos[k*Pi/n]^2, {k, 1, (n - 1)/2}], {n, 0, 10}]; FullSimplify[ExpandAll[a]]
    Denominator[NestList[(5/(5+#))&,0,60]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    LinearRecurrence[{0,7,0,-1},{1,1,1,6,7},30] (* Harvey P. Dale, May 17 2025 *)

Formula

a(n) = Product_{k=1..(n-1)/2} (5 + 4*cos(k*Pi/n)^2).
From Joerg Arndt, Jan 24 2013: (Start)
a(n) = 7*a(n-2) - a(n-4).
G.f.: (x^4 - x^3 - 6*x^2 + x + 1)/((x^2 - 3*x + 1)*(x^2 + 3*x + 1)). (End)