cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152172 a(n) is the number of Dyck paths of semilength n without height of peaks 0 (mod 3) and height of valleys 1 (mod 3).

Original entry on oeis.org

1, 1, 2, 3, 6, 12, 26, 59, 138, 332, 814, 2028, 5118, 13054, 33598, 87143, 227542, 597640, 1577866, 4185108, 11146570, 29798682, 79932298, 215072896, 580327122, 1569942098, 4257254850, 11569980794, 31508150890, 85968266198, 234975421554, 643317390627
Offset: 0

Views

Author

Jun Ma (majun(AT)math.sinica.edu.tw), Nov 27 2008

Keywords

Comments

Hankel transform gives A328380(n+1). - Thomas Scheuerle, Oct 23 2024

Crossrefs

Almost the same as A086625. - R. J. Mathar, Dec 03 2008

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
          `if`(t=0 and irem(y, 3)=0, 0, b(x-1, y-1, 1))+
          `if`(t=1 and irem(y, 3)=1, 0, b(x-1, y+1, 0))))
        end:
    a:= n-> b(2*n, 0$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Oct 23 2024
  • Mathematica
    CoefficientList[Series[(1+x-2x^2-Sqrt[1-2x-3x^2+4x^4])/(2(1-x)x), {x, 0, 30}], x] (* Harvey P. Dale, Apr 10 2012 *)
  • PARI
    {a(n) = my(A, E=ellinit([1, -1, 0, -1, 1]),b=1,c=1,v=[1]); if( n<0, 0, A = O(x); for(k=1, n, v=concat(v,(1/b)*(1/c)); b=(1/b)*(1/c); c=(1-ellmul(E,[0,1],2*k+1)[1])/b; v=concat(v,c) ); for(k=1, #v,A = 1 /(1 - v[#v+1-k]*x*A));polcoeff(A, n))}; \\ Thomas Scheuerle, Oct 23 2024
    
  • PARI
    {a(n) = my(A,v=[1,1,-1,-1,3]); if( n<0, 0, A = O(x); for(k=1, n+1, v=concat(v,(1/v[#v])*(1/v[#v-1])); v=concat(v,(v[#v-2]*v[#v-1]-2)/(v[#v-4]*v[#v-3]*v[#v-2]^2*v[#v-1]^2*v[#v]))); for(k=1, #v,A = 1 /(1 - v[#v+1-k]*x*A));polcoeff(A, n))} \\ Thomas Scheuerle, Oct 23 2024

Formula

G.f.: (1+x-2*x^2-sqrt(1-2*x-3*x^2+4*x^4))/(2*(1-x)*x).
(n+1)*a(n) - 2*n*a(n-1) + (7-3*n)*a(n-2) + 4*a(n-3) + 4*(n-4)*a(n-4) = 0 for n>=4. - R. J. Mathar, Aug 14 2012
G.f.: 1 - 1/G(0) where G(k) = 1 - 1/(x + x^2/(1 + x/G(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 28 2012
G.f.: 1/(1-x/(1-b_{0}*x/(1-c_{0}*x/(1-b_{1}*x/(1-c_{1}*x/(...)))))), with (1-b_{n}*c_{n}) = the x-coordinate of (2*n+1) times the point [0, 1] under the group law of the elliptic curve y^2 + x*y = x^3 - x^2 - x+1. b_{n} = (1/b_{n-1})*(1/c_{n-1}) with b_{0} = 1, also c_{n} = (c_{n-1}*b_{n-1} - 2)/(b_{n}*c_{n-2}*b_{n-2}*(c_{n-1}*b_{n-1})^2) - Thomas Scheuerle, Oct 23 2024