A152176 Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations and reflections.
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 14, 11, 3, 1, 1, 8, 31, 33, 16, 3, 1, 1, 17, 82, 137, 85, 27, 4, 1, 1, 22, 202, 478, 434, 171, 37, 4, 1, 1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1, 1, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1, 1, 121, 3838, 26148
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 1, 3, 2, 1; 1, 3, 5, 2, 1; 1, 7, 14, 11, 3, 1; 1, 8, 31, 33, 16, 3, 1; 1, 17, 82, 137, 85, 27, 4, 1; 1, 22, 202, 478, 434, 171, 37, 4, 1; 1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1; ...
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- Tilman Piesk, Partition related number triangles
- Marko Riedel, Bracelets with swappable colors classified by the distribution of colors, Power Group Enumeration algorithm
- Marko Riedel, Maple code for the number of bracelets with some number of swappable colors by Power Group Enumeration
- Mohammad Hadi Shekarriz, GAP Program
Crossrefs
Programs
-
Mathematica
Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &], 1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}], True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]]; Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[0==n, 1, 0], 1, If[n>0, 1, 0], (* else *) _, If[OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}], Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1] + 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]] (* achiral loops of length n, k colors *) Table[(CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x] + Table[Ach[n, k],{k,1,n}])/2, {n, 1, 20}] // Flatten (* Robert A. Russell, Feb 24 2018 *)
-
PARI
\\ see A056391 for Polya enumeration functions T(n,k) = NonequivalentStructsExactly(DihedralPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
-
PARI
\\ Ach is A304972 and R is A152175 as square matrices. Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M} R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))} T(n)={(R(n) + Ach(n))/2} { my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
Comments