cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152290 Coefficients in a q-analog of the LambertW function, as a triangle read by rows.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 5, 1, 14, 21, 31, 30, 19, 9, 1, 42, 84, 154, 210, 245, 217, 175, 105, 49, 14, 1, 132, 330, 708, 1176, 1722, 2148, 2386, 2358, 2080, 1618, 1086, 644, 294, 104, 20, 1, 429, 1287, 3135, 6006, 10164, 15093, 20496, 25188, 28770, 30225, 29511, 26571
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2008

Keywords

Comments

T(n,k) is the number of parking functions of length n with k inversions. - Kyle Celano, Aug 18 2025

Examples

			Triangle, with columns k=0..n*(n-1)/2 for row n>=0, begins:
  1;
  1;
  2, 1;
  5, 5, 5, 1;
  14, 21, 31, 30, 19, 9, 1;
  42, 84, 154, 210, 245, 217, 175, 105, 49, 14, 1;
  132, 330, 708, 1176, 1722, 2148, 2386, 2358, 2080, 1618, 1086, 644, 294, 104, 20, 1;
  429, 1287, 3135, 6006, 10164, 15093, 20496, 25188, 28770, 30225, 29511, 26571, 22161, 16926, 11832, 7392, 4089, 1932, 714, 195, 27, 1;...
where row sums = (n+1)^(n-1) and column 0 is A000108 (Catalan numbers).
Row sums at q=-1 = (n+1)^[(n-1)/2] (A152291): [1,1,1,4,5,36,49,512,729,...].
The generating function starts:
A(x,q) = 1 + x + (2 + q)*x^2/faq(2,q) + (5 + 5*q + 5*q^2 + q^3)*x^3/faq(3,q) + (14 + 21*q + 31*q^2 + 30*q^3 + 19*q^4 + 9*q^5 + q^6)*x^4/faq(4,q) + ...
G.f. satisfies: A(x,q) = e_q( x*A(x,q), q), where the q-exponential series e_q(x,q) begins:
e_q(x,q) = 1 + x + x^2/faq(2,q) + x^3/faq(3,q) +...+ x^n/faq(n,q) +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1):
faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2),
faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
Special cases of g.f.:
q=0: A(x,0) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 +... (Catalan)
q=1: A(x,1) = 1 + x + 3/2*x^2 + 16/6*x^3 + 125/24*x^4 +...= LambertW(-x)/(-x)
q=2: A(x,2) = 1 + x + 4/3*x^2 + 43/21*x^3 + 1076/315*x^4 + 58746/9765*x^5 +...
q=-1: Can A(x,-1) be defined? See A152291.
		

Crossrefs

Cf. A152291 (q=-1), A000272 (row sums), A000108 (column 0), A002054 (column 1).
Cf. A152282 (q=2), A152283 (q=3).
Cf. A121774.

Programs

  • PARI
    /* G.f.: LambertW_q(x,q) = (1/x)*Series_Reversion( x/e_q(x,q) ): */
    {T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))),LW_q=serreverse(x/e_q+x^2*O(x^n))/x); polcoeff(polcoeff(LW_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}
    for(n=0,8,for(k=0,n*(n-1)/2,print1(T(n,k),","));print(""))

Formula

G.f.: A(x,q) = Sum_{n>=0} Sum_{k=0..n*(n-1)/2} T(n,k)*q^k*x^n/faq(n,q), where faq(n,q) is the q-factorial of n.
G.f.: A(x,q) = (1/x)*Series_Reversion( x/e_q(x,q) ) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f. satisfies: A(x,q) = e_q( x*A(x,q), q) and A( x/e_q(x,q), q) = e_q(x,q).
G.f. at q=1: A(x,1) = LambertW(-x)/(-x).
Row sums at q=+1: Sum_{k=0..n*(n-1)/2} T(n,k) = (n+1)^(n-1).
Row sums at q=-1: Sum_{k=0..n*(n-1)/2} T(n,k)*(-1)^k = (n+1)^[(n-1)/2] (A152291).
Sum_{k=0..n*(n-1)/2} T(n,k)*exp(2*Pi*I*k/n) = 1 for n>=1; i.e., the n-th row sum at q = exp(2*Pi*I/n), the n-th root of unity, equals 1 for n>=1. - Paul D. Hanna, Dec 04 2008
Sum_{k=0..n*(n-1)/2} T(n,k)*q^k = Sum_{pi} n!/(n-k+1)!*faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs through all nonnegative integer solutions of e(1)+2*e(2)+...+n*e(n) = n and k = e(1)+e(2)+...+e(n). - Vladeta Jovovic, Dec 05 2008
Sum_{k=0..[n/2]} T(n, n*k) = (1/n)*Sum_{d|n} phi(n/d)*(n+1)^(d-1), for n>0, with a(0)=1. - Paul D. Hanna, Jul 18 2013
Sum_{k=0..[n/2]} T(n, n*k) = A121774(n), the number of n-bead necklaces with n+1 colors, divided by (n+1). - Paul D. Hanna, Jul 18 2013