A152550
Coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2), as a triangle read by rows.
Original entry on oeis.org
1, 1, 3, 2, 12, 16, 16, 5, 55, 110, 170, 180, 130, 70, 14, 273, 728, 1443, 2145, 2640, 2614, 2200, 1485, 783, 288, 42, 1428, 4760, 11312, 20657, 32032, 42833, 50477, 52934, 49441, 41069, 29876, 19019, 10010, 4158, 1155, 132, 7752, 31008, 85272
Offset: 0
Triangle begins:
1;
1;
3,2;
12,16,16,5;
55,110,170,180,130,70,14;
273,728,1443,2145,2640,2614,2200,1485,783,288,42;
1428,4760,11312,20657,32032,42833,50477,52934,49441,41069,29876,19019,10010,4158,1155,132;
7752,31008,85272,181356,328440,521152,745416,969000,1159060,1278996,1307556,1238368,1085488,877240,650052,437164,262964,138320,60424,20592,4576,429;...
where row sums = (2*n+1)^(n-1) (A052750).
Row sums at q=-1 = (2*n+1)^[(n-1)/2] (A152551).
The generating function starts:
A(x,q) = 1 + x + (3 + 2*q)*x^2/faq(2,q) + (12 + 16*q + 16*q^2 + 5*q^3)*x^3/faq(3,q) + (55 + 110*q + 170*q^2 + 180*q^3 + 130*q^4 + 70*q^5 + 14*q^6)*x^4/faq(4,q) + ...
G.f. satisfies: A(x,q) = e_q( x*A(x,q)^2, q) where q-exponential series: e_q(x,q) = 1 + x + x^2/faq(2,q) + x^3/faq(3,q) +...+ x^n/faq(n,q) +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1): faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3),...
Special cases.
q=0: A(x,0) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 +... (A001764)
q=1: A(x,1) = 1 + x + 5/2*x^2 + 49/6*x^3 + 729/24*x^4 + 14641/120*x^5 +...
q=2: A(x,2) = 1 + x + 7/3*x^2 + 148/21*x^3 + 7611/315*x^4 + 872341/9765*x^5 +...
q=3: A(x,3) = 1 + x + 9/4*x^2 + 339/52*x^3 + 44521/2080*x^4 + 19059921/251680*x^5 +...
-
{T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); polcoeff(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}
A152555
Coefficients in a q-analog of the function LambertW(-2*x)/(-2*x), as a triangle read by rows.
Original entry on oeis.org
1, 2, 7, 5, 30, 42, 42, 14, 143, 297, 462, 495, 363, 198, 42, 728, 2002, 4004, 6006, 7436, 7436, 6292, 4290, 2288, 858, 132, 3876, 13260, 31824, 58604, 91364, 122876, 145535, 153361, 143936, 120185, 87971, 56329, 29939, 12584, 3575, 429, 21318, 87210
Offset: 0
Triangle begins:
1;
2;
7,5;
30,42,42,14;
143,297,462,495,363,198,42;
728,2002,4004,6006,7436,7436,6292,4290,2288,858,132;
3876,13260,31824,58604,91364,122876,145535,153361,143936,120185,87971,56329,29939,12584,3575,429;
21318,87210,242250,519384,945744,1508070,2165664,2826420,3392520,3756626,3853322,3662106,3221330,2613240,1944324,1313760,794614,420784,185640,64090,14586,1430;...
where row sums = 2*(2*n+2)^(n-1) (A097629).
Row sums at q=-1 = 2*(2*n+2)^[(n-1)/2] (A152556).
The generating function starts:
A(x,q) = 1 + 2*x + (7 + 5*q)*x^2/faq(2,q) + (30 + 42*q + 42*q^2 + 14*q^3)*x^3/faq(3,q) + (143 + 297*q + 462*q^2 + 495*q^3 + 363*q^4 + 198*q^5 + 42*q^6)*x^4/faq(4,q) + ...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1): faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
Special cases.
q=0: A(x,0) = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 +... (A006013)
q=1: A(x,1) = 1 + 2*x + 12/2*x^2 + 128/6*x^3 + 2000/24*x^4 + 41472/120*x^5 +...
q=2: A(x,2) = 1 + 2*x + 17/3*x^2 + 394/21*x^3 + 21377/315*x^4 + 2537724/9765*x^5 +...
q=3: A(x,3) = 1 + 2*x + 22/4*x^2 + 912/52*x^3 + 126692/2080*x^4 + 56277344/251680*x^5 +...
-
{T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); polcoeff(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}
A152800
Irregular triangle read by rows: the q-analog of the Euler numbers; expansion of the arithmetic inverse of the q-cosine of x.
Original entry on oeis.org
1, 1, 0, 1, 2, 1, 1, 0, 0, 1, 3, 5, 8, 10, 10, 9, 7, 5, 2, 1, 0, 0, 0, 1, 4, 10, 21, 36, 55, 78, 101, 122, 138, 145, 143, 134, 117, 95, 72, 50, 32, 18, 9, 3, 1, 0, 0, 0, 0, 1, 5, 16, 41, 87, 164, 283, 452, 679, 967, 1311, 1700, 2118, 2540, 2937, 3282, 3546, 3706, 3751, 3676, 3487
Offset: 0
Nonzero coefficients in row n range from x^(n-1) to x^(2n(n-1)) for n>0.
Triangle begins:
1;
1;
0,1,2,1,1;
0,0,1,3,5,8,10,10,9,7,5,2,1;
0,0,0,1,4,10,21,36,55,78,101,122,138,145,143,134,117,95,72,50,32,18,9,3,1;
0,0,0,0,1,5,16,41,87,164,283,452,679,967,1311,1700,2118,2540,2937,3282,3546,3706,3751,3676,3487,3202,2842,2436,2014,1602,1223,894,622,409,253,145,76,35,14,4,1;
...
Explicit expansion of g.f.:
1/cos_q(x,q) = 1 + x^2/faq(2,q) + x^4*(q + 2*q^2 + q^3 + q^4)/faq(4,q) +
x^6*(q^2 + 3*q^3 + 5*q^4 + 8*q^5 + 10*q^6 + 10*q^7 + 9*q^8 + 7*q^9 + 5*q^10 + 2*q^11 + q^12)/faq(6,q) +
x^8*(q^3 + 4*q^4 + 10*q^5 + 21*q^6 + 36*q^7 + 55*q^8 + 78*q^9 + 101*q^10 + 122*q^11 + 138*q^12 + 145*q^13 + 143*q^14 + 134*q^15 + 117*q^16 + 95*q^17 + 72*q^18 + 50*q^19 + 32*q^20 + 18*q^21 + 9*q^22 + 3*q^23 + q^24)/faq(8,q) +...
- Paul D. Hanna, Table of n, a(n) for n = 0..2255, as a flattened triangle of rows 0..15
- M. M. Graev, Einstein equations for invariant metrics on flag spaces and their Newton polytopes, Transactions of the Moscow Mathematical Society, 2014, pp. 13-68. Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 75 (2014), vypusk 1.
- Eric Weisstein, q-Cosine Function from MathWorld.
- Eric Weisstein, q-Factorial from MathWorld.
-
{T(n,k)=polcoeff(polcoeff(1/sum(m=0,n,(-1)^m*x^(2*m)/prod(j=1,2*m,(q^j-1)/(q-1))+x*O(x^(2*n+1))),2*n,x)*prod(j=1,2*n,(q^j-1)/(q-1)),k,q)}
for(n=0,8,for(k=0,2*n*(n-1),print1(T(n,k),", "));print(""))
A139755
Table of q-derangement numbers of type A, by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 3, 5, 7, 8, 8, 6, 4, 2, 1, 4, 9, 16, 24, 32, 37, 38, 35, 28, 20, 12, 6, 2, 1, 1, 5, 14, 30, 54, 86, 123, 160, 191, 210, 214, 202, 176, 141, 104, 69, 41, 21, 9, 3, 1, 6, 20, 50, 104, 190, 313, 473, 663, 868, 1068, 1240, 1362, 1417, 1398, 1307, 1157, 968
Offset: 1
The table begins:
==============================================================================
k=...|.1.|.2.|.3.|..4.|..5.|..6.|..7.|..8.|..9.|.10.|.11.|.12.|.13.|.14.|.15.|
==============================================================================
n=2..|.1.|
n=3..|.1.|.1.|
n=4..|.1.|.2.|.2.|..2.|..1.|..1.|
n=5..|.1.|.3.|.5.|..7.|..8.|..8.|..6.|..4.|..2.|
n=6..|.1.|.4.|.9.|.16.|.24.|.32.|.37.|.38.|.35.|.28.|.20.|.12.|..6.|..2.|..1.|
===============================================================================
Number of terms in rows 2..22: [1,2,6,9,15,20,28,35,45,54,66,77,91,104,120,135,153,170,190,209,231].
From _Paul D. Hanna_, Jun 20 2009: (Start)
For row n=4, the sum over powers of I, a 4th root of unity, is:
1*I + 2*I^2 + 2*I^3 + 2*I^4 + 1*I^5 + 1*I^6 = -1. (End)
-
T[n_, k_] := SeriesCoefficient[QFactorial[n, q] Sum[(-1)^m q^(m(m-1)/2)/ QFactorial[m, q], {m, 0, n}], {q, 0, k}];
Table[T[n, k], {n, 2, 8}, {k, 1, n(n-1)/2 - Mod[n, 2]}] // Flatten (* Jean-François Alcover, Jul 26 2018 *)
-
T(n,k)=if(k<1 || k>n*(n-1)/2-(n%2),0,polcoeff( prod(j=1,n,(1-q^j)/(1-q))*sum(k=0,n,(-1)^k*q^(k*(k-1)/2)/if(k==0,1,prod(j =1,k,(1-q^j)/(1-q)))),k,q)) \\ Paul D. Hanna, Jul 07 2008
A152291
a(n) = (n+1)^floor((n-1)/2).
Original entry on oeis.org
1, 1, 1, 4, 5, 36, 49, 512, 729, 10000, 14641, 248832, 371293, 7529536, 11390625, 268435456, 410338673, 11019960576, 16983563041, 512000000000, 794280046581, 26559922791424, 41426511213649, 1521681143169024, 2384185791015625
Offset: 0
This is for Coxeter type A what
A078707 is for Coxeter type B.
-
[(n+1)^((n-1) div 2): n in [0..30]]; // Vincenzo Librandi, May 31 2015
-
a(n)=(n+1)^floor((n-1)/2)
-
vector(30, n, n--; (n+1)^((n-1)\2)) \\ Michel Marcus, Jun 01 2015
A121774
Number of n-bead necklaces with n+1 colors, divided by (n+1), for n>0, with a(0)=1.
Original entry on oeis.org
1, 1, 2, 6, 33, 260, 2812, 37450, 597965, 11111134, 235796238, 5628851294, 149346730841, 4361070182716, 139013934267864, 4803839602537336, 178901440745010273, 7143501829211426576, 304465936544543927890, 13797052631578947368422, 662424832016591020302673, 33591880889828764020700500
Offset: 0
-
a[n_] := DivisorSum[n, EulerPhi[n/#] * (n+1)^(#-1) &] / n; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Aug 15 2023 *)
-
a(n)=if(n==0,1,(1/n)*sumdiv(n,d,eulerphi(n/d)*(n+1)^(d-1)))
-
/* a(n) = Sum_{k=0..[n/2]} A152290(n, n*k): */
{A152290(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))),LW_q=serreverse(x/e_q+x^2*O(x^n))/x); polcoeff(polcoeff(LW_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}
{a(n)=sum(k=0,n\2,A152290(n, n*k))}
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Jul 18 2013
A152282
Coefficients in a q-analog of the LambertW function at q=2: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,2) where faq(n,q) = q-factorial of n.
Original entry on oeis.org
1, 1, 4, 43, 1076, 58746, 6772360, 1619251271, 794625904404, 795206398610710, 1615965837952912216, 6649024230536100958062, 55277445682961080929146824, 927088288759058912165347148404, 31329256772332779793923906186541200
Offset: 0
G.f.: A(x) = 1 + x + 4/3*x^2 + 43/21*x^3 + 1076/315*x^4 + 58746/9765*x^5 +...
G.f. satisfies: A(x) = e_q( x*A(x), 2) where the q-exponential series is:
e_q(x,q) = 1 + x + x^2/faq(2,q) + x^3/faq(3,q) +...+ x^n/faq(n,q) +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1):
faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
Also, the logarithm of the g.f. begins:
log(A(x)) = A(x)*x/(2-1) - A(x)^2*x^2/(2*(2^2-1)) + A(x)^3*x^3/(3*(2^3-1)) - A(x)^4*x^4/(4*(2^4-1)) + A(x)^5*x^5/(5*(2^5-1)) +...
-
{a(n,q=2)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))),LW_q=serreverse(x/e_q+x^2*O(x^n))/x); polcoeff(LW_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))}
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,-(A+x*O(x^n))^m*(-x)^m/(m*(2^m-1)))));prod(k=1,n,2^k-1)*polcoeff(A,n)}
A152283
Coefficients in a q-analog of the LambertW function at q=3: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,3) where faq(n,q) = q-factorial of n.
Original entry on oeis.org
1, 1, 5, 92, 5621, 1093236, 663362421, 1242109529088, 7129029760138649, 124860091946887218320, 6652206059042029394600021, 1075572123264132205051327968256, 526826946994724781414669857330392909
Offset: 0
G.f.: A(x) = 1 + x + 5/4*x^2 + 92/52*x^3 + 5621/2080*x^4 + 1093236/251680*x^5 +...
G.f. satisfies: A(x) = e_q( x*A(x), 3) where the q-exponential series is:
e_q(x,q) = 1 + x + x^2/faq(2,q) + x^3/faq(3,q) +...+ x^n/faq(n,q) +...
e_q(x,3) = 1 + x + x^2/4 + x^3/52 + x^4/2080 + x^5/251680 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1):
faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
-
{a(n,q=3)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))),LW_q=serreverse(x/e_q+x^2*O(x^n))/x); polcoeff(LW_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))}
A386011
Total number of inversions in all parking functions of length n.
Original entry on oeis.org
0, 1, 18, 300, 5400, 108045, 2408448, 59521392, 1620000000, 48230748225, 1560833556480, 54591962772204, 2053129541019648, 82648417236328125, 3546584706554265600, 161642713497024891840, 7799116552647941947392, 397183826482614347896737
Offset: 1
a(2)=1 because in the 3 parking functions of length 2 (11, 12, 21), there is 1 inversion: (1,2).
- Kyle Celano, Table of n, a(n) for n = 1..100
- Kyle Celano, Jennifer Elder, Kimberly P. Hadaway, Pamela E. Harris, Amanda Priestley, and Gabe Udell, Inversions in parking functions, arXiv:2508.11587 [math.CO], 2025.
- Richard P. Stanley, Parking Functions, 2011.
- Wikipedia, Parking function.
-
Table[Binomial[n,2] * n*(n+1)^(n-2)/2, {n, 0, 18}]
Showing 1-9 of 9 results.
Comments