cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A152290 Coefficients in a q-analog of the LambertW function, as a triangle read by rows.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 5, 1, 14, 21, 31, 30, 19, 9, 1, 42, 84, 154, 210, 245, 217, 175, 105, 49, 14, 1, 132, 330, 708, 1176, 1722, 2148, 2386, 2358, 2080, 1618, 1086, 644, 294, 104, 20, 1, 429, 1287, 3135, 6006, 10164, 15093, 20496, 25188, 28770, 30225, 29511, 26571
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2008

Keywords

Comments

T(n,k) is the number of parking functions of length n with k inversions. - Kyle Celano, Aug 18 2025

Examples

			Triangle, with columns k=0..n*(n-1)/2 for row n>=0, begins:
  1;
  1;
  2, 1;
  5, 5, 5, 1;
  14, 21, 31, 30, 19, 9, 1;
  42, 84, 154, 210, 245, 217, 175, 105, 49, 14, 1;
  132, 330, 708, 1176, 1722, 2148, 2386, 2358, 2080, 1618, 1086, 644, 294, 104, 20, 1;
  429, 1287, 3135, 6006, 10164, 15093, 20496, 25188, 28770, 30225, 29511, 26571, 22161, 16926, 11832, 7392, 4089, 1932, 714, 195, 27, 1;...
where row sums = (n+1)^(n-1) and column 0 is A000108 (Catalan numbers).
Row sums at q=-1 = (n+1)^[(n-1)/2] (A152291): [1,1,1,4,5,36,49,512,729,...].
The generating function starts:
A(x,q) = 1 + x + (2 + q)*x^2/faq(2,q) + (5 + 5*q + 5*q^2 + q^3)*x^3/faq(3,q) + (14 + 21*q + 31*q^2 + 30*q^3 + 19*q^4 + 9*q^5 + q^6)*x^4/faq(4,q) + ...
G.f. satisfies: A(x,q) = e_q( x*A(x,q), q), where the q-exponential series e_q(x,q) begins:
e_q(x,q) = 1 + x + x^2/faq(2,q) + x^3/faq(3,q) +...+ x^n/faq(n,q) +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1):
faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2),
faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
Special cases of g.f.:
q=0: A(x,0) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 +... (Catalan)
q=1: A(x,1) = 1 + x + 3/2*x^2 + 16/6*x^3 + 125/24*x^4 +...= LambertW(-x)/(-x)
q=2: A(x,2) = 1 + x + 4/3*x^2 + 43/21*x^3 + 1076/315*x^4 + 58746/9765*x^5 +...
q=-1: Can A(x,-1) be defined? See A152291.
		

Crossrefs

Cf. A152291 (q=-1), A000272 (row sums), A000108 (column 0), A002054 (column 1).
Cf. A152282 (q=2), A152283 (q=3).
Cf. A121774.

Programs

  • PARI
    /* G.f.: LambertW_q(x,q) = (1/x)*Series_Reversion( x/e_q(x,q) ): */
    {T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))),LW_q=serreverse(x/e_q+x^2*O(x^n))/x); polcoeff(polcoeff(LW_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}
    for(n=0,8,for(k=0,n*(n-1)/2,print1(T(n,k),","));print(""))

Formula

G.f.: A(x,q) = Sum_{n>=0} Sum_{k=0..n*(n-1)/2} T(n,k)*q^k*x^n/faq(n,q), where faq(n,q) is the q-factorial of n.
G.f.: A(x,q) = (1/x)*Series_Reversion( x/e_q(x,q) ) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f. satisfies: A(x,q) = e_q( x*A(x,q), q) and A( x/e_q(x,q), q) = e_q(x,q).
G.f. at q=1: A(x,1) = LambertW(-x)/(-x).
Row sums at q=+1: Sum_{k=0..n*(n-1)/2} T(n,k) = (n+1)^(n-1).
Row sums at q=-1: Sum_{k=0..n*(n-1)/2} T(n,k)*(-1)^k = (n+1)^[(n-1)/2] (A152291).
Sum_{k=0..n*(n-1)/2} T(n,k)*exp(2*Pi*I*k/n) = 1 for n>=1; i.e., the n-th row sum at q = exp(2*Pi*I/n), the n-th root of unity, equals 1 for n>=1. - Paul D. Hanna, Dec 04 2008
Sum_{k=0..n*(n-1)/2} T(n,k)*q^k = Sum_{pi} n!/(n-k+1)!*faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs through all nonnegative integer solutions of e(1)+2*e(2)+...+n*e(n) = n and k = e(1)+e(2)+...+e(n). - Vladeta Jovovic, Dec 05 2008
Sum_{k=0..[n/2]} T(n, n*k) = (1/n)*Sum_{d|n} phi(n/d)*(n+1)^(d-1), for n>0, with a(0)=1. - Paul D. Hanna, Jul 18 2013
Sum_{k=0..[n/2]} T(n, n*k) = A121774(n), the number of n-bead necklaces with n+1 colors, divided by (n+1). - Paul D. Hanna, Jul 18 2013

A078707 Number of vectors of length n that are symmetric about the middle, where each element is drawn from a set of n distinct elements.

Original entry on oeis.org

1, 1, 2, 9, 16, 125, 216, 2401, 4096, 59049, 100000, 1771561, 2985984, 62748517, 105413504, 2562890625, 4294967296, 118587876497, 198359290368, 6131066257801, 10240000000000, 350277500542221, 584318301411328, 21914624432020321, 36520347436056576
Offset: 0

Views

Author

Mark Sterling, Dec 18 2002

Keywords

Examples

			Examples added by _N. J. A. Sloane_, Jun 17 2014:
n=1: 1 (1).
n=2: 11, 22 (2).
n=3: 111X3, 121X6 (9).
n=4: 1111X4, 1221X12 (16).
n=5: 11111X5, 11211X20, 12221X20, 12121X20, 12321X60 (125).
		

Crossrefs

This is for Coxeter type B what A152291 is for Coxeter type A.

Programs

  • Maple
    a:= n-> n^ceil(n/2): seq(a(n), n=0..30);  # Alois P. Heinz, Jul 23 2014
  • Mathematica
    Join[{1}, Table[n^Ceiling[n/2], {n, 30}]] (* Wesley Ivan Hurt, Jan 15 2017 *)
  • PARI
    for(n=1,22,print1(n^((n+n%2)/2),","))

Formula

a(n) = n^(floor((n+1)/2)) = n^ceiling(n/2).

Extensions

Extended by Klaus Brockhaus, Dec 19 2002
a(0)=1 inserted by Alois P. Heinz, Jul 23 2014

A203411 Discriminant of the cyclotomic binomial period polynomial for an odd prime.

Original entry on oeis.org

1, 5, 49, 14641, 371293, 410338673, 16983563041, 41426511213649, 10260628712958602189, 756943935220796320321, 456487940826035155404146917, 4394336169668803158610484050361, 467056167777397914441056671494001, 6111571184724799803076702357055363809
Offset: 2

Views

Author

Franz Vrabec, Jan 01 2012

Keywords

Examples

			a(5) = 11^4 = 14641, because prime(5) = 11.
		

Crossrefs

Cf. A152291.

Programs

  • Mathematica
    #^((#-3)/2)&/@Prime[Range[2,20]] (* Harvey P. Dale, Aug 11 2023 *)
  • PARI
    a(n) = prime(n)^((prime(n)-3)/2); \\ Michel Marcus, Apr 15 2017

Formula

a(n) = prime(n)^((prime(n)-3)/2).

Extensions

More terms from Franklin T. Adams-Watters, Jan 24 2012

A363861 Sequence related to chains in type D noncrossing partitions.

Original entry on oeis.org

4, 6, 64, 100, 1296, 2058, 32768, 52488, 1000000, 1610510, 35831808, 57921708, 1475789056, 2392031250, 68719476736, 111612119056, 3570467226624, 5808378560022, 204800000000000, 333597619564020, 12855002631049216, 20961814674106394, 876488338465357824, 1430511474609375000, 64509974703297150976
Offset: 3

Views

Author

F. Chapoton, Jun 25 2023

Keywords

Comments

This is counting chains in the noncrossing partition lattices of type D_n that proceed by steps of type A2, except at most one step of type A1 at the end. This is a decomposition number in the terminology of Krattenthaler and Müller.

Crossrefs

This is for Coxeter type D what A078707 is for Coxeter type B and A152291 is for Coxeter type A.

Programs

  • Sage
    print([(n-2)*(n-1)**(n/2-1) if not n % 2 else (n-1)**((n+1)/2) for n in range(3,28)])

Formula

a(n) = (n-2)*(n-1)^(n/2-1) if n is even else a(n) = (n-1)^((n+1)/2).
Showing 1-4 of 4 results.