cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A275549 Number of classes of endofunctions of [n] under reversal.

Original entry on oeis.org

1, 1, 3, 18, 136, 1625, 23436, 412972, 8390656, 193739769, 5000050000, 142656721086, 4458051717120, 151437584670385, 5556003465485760, 218946946471875000, 9223372039002259456, 413620131002462320337, 19673204037747448432896, 989209827833222327690890
Offset: 0

Views

Author

Olivier Gérard, Aug 01 2016

Keywords

Comments

f and g are in the same class if function g(i) = f(n+1-i) for all i.
Decomposition by class size
.
n 1 2
---------------
1 1 0
2 2 1
3 9 9
4 16 120
5 125 1500
6 216 23220
7 2401 410571
.
Demonstration for the formula: the classes are either of size 1 or 2.
The classes of size 1 is for functions invariant by reversal. They are specified by half their values, including one more if n is odd. Their number is n^(ceiling(n/2)).
So the number of classes under this symmetry is half (the number of functions + the number of classes of size 1).
a(n) is the number of unoriented length n strings with a maximum of n colors. - Andrew Howroyd, Sep 13 2019

Crossrefs

Main diagonal of A277504.
Cf. A000312 All endofunctions
Cf. A000169 Classes under translation mod n
Cf. A001700 Classes under sort
Cf. A056665 Classes under rotation
Cf. A168658 Classes under complement to n+1
Cf. A130293 Classes under translation and rotation
Cf. A081721 Classes under rotation and reversal
Cf. A275550 Classes under reversal and complement
Cf. A275551 Classes under translation and reversal
Cf. A275552 Classes under translation and complement
Cf. A275553 Classes under translation, complement and reversal
Cf. A275554 Classes under translation, rotation and complement
Cf. A275555 Classes under translation, rotation and reversal
Cf. A275556 Classes under translation, rotation, complement and reversal
Cf. A275557 Classes under rotation and complement
Cf. A275558 Classes under rotation, complement and reversal
Cf. A078707 Endofunctions symmetric around their middle (stable by reversal).

Programs

Formula

a(n) = (n^n+n^ceiling(n/2))/2.

A152291 a(n) = (n+1)^floor((n-1)/2).

Original entry on oeis.org

1, 1, 1, 4, 5, 36, 49, 512, 729, 10000, 14641, 248832, 371293, 7529536, 11390625, 268435456, 410338673, 11019960576, 16983563041, 512000000000, 794280046581, 26559922791424, 41426511213649, 1521681143169024, 2384185791015625
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2008

Keywords

Crossrefs

This is for Coxeter type A what A078707 is for Coxeter type B.

Programs

  • Magma
    [(n+1)^((n-1) div 2): n in [0..30]]; // Vincenzo Librandi, May 31 2015
  • PARI
    a(n)=(n+1)^floor((n-1)/2)
    
  • PARI
    vector(30, n, n--; (n+1)^((n-1)\2)) \\ Michel Marcus, Jun 01 2015
    

Formula

Row sums of A152290 at q=-1: a(n) = Sum_{k=0..n(n-1)/2} A152290(n,k)*(-1)^k.
a(n) = denominator((-3+(-1)^n)*((1-sqrt(1+n+1/(1+n)))^n-(1+sqrt(1+n+1/(1+n)))^n)/(8*sqrt(1+n+1/(1+n)))). - Gerry Martens, May 31 2015

A092503 a(n) = n^floor(n/2).

Original entry on oeis.org

1, 1, 2, 3, 16, 25, 216, 343, 4096, 6561, 100000, 161051, 2985984, 4826809, 105413504, 170859375, 4294967296, 6975757441, 198359290368, 322687697779, 10240000000000, 16679880978201, 584318301411328, 952809757913927, 36520347436056576, 59604644775390625
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 05 2004

Keywords

Crossrefs

Cf. A000312 (n^n), A078707 (n^ceiling(n/2)).

Programs

Formula

a(n) = n^((n-(1-(-1)^n)/2)/2). - Wesley Ivan Hurt, Mar 19 2015

A243520 Numbers that are congruent to {0, 8} mod 11.

Original entry on oeis.org

0, 8, 11, 19, 22, 30, 33, 41, 44, 52, 55, 63, 66, 74, 77, 85, 88, 96, 99, 107, 110, 118, 121, 129, 132, 140, 143, 151, 154, 162, 165, 173, 176, 184, 187, 195, 198, 206, 209, 217, 220, 228, 231, 239, 242, 250, 253, 261, 264, 272, 275, 283, 286, 294, 297, 305
Offset: 0

Views

Author

Viet Quoc Le Tran, Jun 14 2014

Keywords

Comments

Union of A008593 and A017485. - Michel Marcus, Jun 15 2014
This sequence mimics in some sense the ceiling function of n/2 (the seq. A110654) relative to variations from a main class of recurrence relations; in order to get the ceiling function of n/2 (see Formula section), the vector v must be [0,1] instead of [3,8]. - R. J. Cano, Jun 15 2014

Crossrefs

Programs

  • Magma
    &cat [[11*n,11*n+8]: n in [0..30]]; // [Bruno Berselli, Jun 16 2014]
  • Maple
    A243520:=n->5*n + 2*(n mod 2) + ceil(n/2); seq(A243520(n), n=0..50); # Wesley Ivan Hurt, Jun 21 2014
  • Mathematica
    Flatten[Table[11 n + {0, 8}, {n, 0, 32}]] (* Alonso del Arte, Jun 15 2014 *)
  • PARI
    a(n)=5*n+2*(n%2)+ceil(n/2); \\ R. J. Cano, Jun 15 2014
    
  • PARI
    a(n)=if(!n,0,a(n-1)+[3,8][1+n%2]); \\ R. J. Cano, Jun 15 2014
    

Formula

a(n) = -5/4*(-1)^n + 11*n/2 + 5/4.
From R. J. Cano, Jun 15 2014: (Start)
a(n) = 5*n + 2*(n mod 2) + ceiling(n/2).
If n=0 then a(n) is zero, else a(n) = a(n-1) + v[n mod 2], where v is [3,8]. (End)
G.f.: x*(8 + 3*x) / ((1 + x)*(1 - x)^2). [Bruno Berselli, Jun 16 2014]
a(n) = sum( A010706(i), i=0..n ) - 3. [Bruno Berselli, Jun 16 2014]
E.g.f.: (11*x*exp(x) + 5*sinh(x))/2. - David Lovler, Sep 04 2022

A363861 Sequence related to chains in type D noncrossing partitions.

Original entry on oeis.org

4, 6, 64, 100, 1296, 2058, 32768, 52488, 1000000, 1610510, 35831808, 57921708, 1475789056, 2392031250, 68719476736, 111612119056, 3570467226624, 5808378560022, 204800000000000, 333597619564020, 12855002631049216, 20961814674106394, 876488338465357824, 1430511474609375000, 64509974703297150976
Offset: 3

Views

Author

F. Chapoton, Jun 25 2023

Keywords

Comments

This is counting chains in the noncrossing partition lattices of type D_n that proceed by steps of type A2, except at most one step of type A1 at the end. This is a decomposition number in the terminology of Krattenthaler and Müller.

Crossrefs

This is for Coxeter type D what A078707 is for Coxeter type B and A152291 is for Coxeter type A.

Programs

  • Sage
    print([(n-2)*(n-1)**(n/2-1) if not n % 2 else (n-1)**((n+1)/2) for n in range(3,28)])

Formula

a(n) = (n-2)*(n-1)^(n/2-1) if n is even else a(n) = (n-1)^((n+1)/2).
Showing 1-5 of 5 results.