A152292 Primes p of the form : (p-n)/(n+1)=prime and (n+1)*p+n=prime. n=2.
17, 23, 59, 89, 239, 269, 293, 383, 419, 503, 953, 1013, 1193, 1259, 1823, 1979, 2129, 2633, 2789, 3209, 3389, 4229, 5099, 5333, 6089, 6299, 6803, 7019, 7673, 7853, 8123, 8513, 8753, 8819, 9059, 9203, 10169, 10223, 10589, 10853, 10979, 11159, 12689
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[NthPrime(n): n in [5..2*10^3] | IsPrime(NthPrime(n) div 3) and IsPrime(3*NthPrime(n)+2)]; // Vincenzo Librandi, Mar 08 2018
-
Maple
Res:= NULL: count:= 0: q:= 1: while count < 100 do q:= nextprime(q); if isprime(3*q+2) and isprime(9*q+8) then Res:= Res, 3*q+2; count:= count+1 fi od: Res; # Robert Israel, Mar 07 2018
-
Mathematica
lst={};n=2;Do[p=Prime[k];If[PrimeQ[(p-n)/(n+1)]&&PrimeQ[(n+1)*p+n],AppendTo[lst,p]],{k,7!}];lst
-
PARI
lista(nn) = forprime(p=17, nn, if(isprime(3*p+2) && isprime(p\3), print1(p", "))); \\ Altug Alkan, Mar 07 2018
Comments