A152311 Primes p such that the multiplicative order of 2 modulo p is (p-1)/11.
331, 1013, 4643, 12101, 12893, 16061, 17117, 23893, 25763, 25939, 28403, 30493, 32429, 32957, 34739, 36389, 38149, 39139, 42043, 44771, 45541, 46861, 53923, 57773, 59621, 60611, 81533, 85229, 87187, 89123, 92357, 96493, 100981, 105227
Offset: 1
Keywords
Links
- Klaus Brockhaus, Table of n, a(n) for n=1..1000
Programs
-
Magma
[ p: p in PrimesUpTo(105227) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,11) where R is ResidueClassRing(p) ];
-
Mathematica
okQ[p_] := MultiplicativeOrder[2, p] == (p-1)/11; Select[Prime[Range[20000]], okQ] (* Jean-François Alcover, Nov 23 2024 *)
-
PARI
Vec(select(p->((p!=2) && (znorder(Mod(2, p)) == (p-1)/11)), primes(20000))) \\ Michel Marcus, Feb 09 2015