cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152311 Primes p such that the multiplicative order of 2 modulo p is (p-1)/11.

Original entry on oeis.org

331, 1013, 4643, 12101, 12893, 16061, 17117, 23893, 25763, 25939, 28403, 30493, 32429, 32957, 34739, 36389, 38149, 39139, 42043, 44771, 45541, 46861, 53923, 57773, 59621, 60611, 81533, 85229, 87187, 89123, 92357, 96493, 100981, 105227
Offset: 1

Views

Author

Klaus Brockhaus, Dec 02 2008

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(105227) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,11) where R is ResidueClassRing(p) ];
    
  • Mathematica
    okQ[p_] := MultiplicativeOrder[2, p] == (p-1)/11;
    Select[Prime[Range[20000]], okQ] (* Jean-François Alcover, Nov 23 2024 *)
  • PARI
    Vec(select(p->((p!=2) && (znorder(Mod(2, p)) == (p-1)/11)), primes(20000))) \\ Michel Marcus, Feb 09 2015