cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152398 The q-exponential of x, e_q(x,q), evaluated at q = -x.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 11, 17, 28, 48, 80, 128, 204, 332, 545, 887, 1432, 2313, 3750, 6086, 9859, 15944, 25788, 41749, 67604, 109415, 177017, 286409, 463495, 750081, 1213713, 1963771, 3177444, 5141446, 8319390, 13461189, 21780519, 35241682
Offset: 0

Views

Author

Paul D. Hanna, Dec 16 2008

Keywords

Comments

The g.f.s for this sequence illustrate the following formula:
log(e_q(x,q)) = Sum_{n>=1} (1-q)^n/(1-q^n)*x^n/n, where
e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential of x and
faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.

Examples

			G.f.: e_q(x,-x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 11*x^6 + ...
log(e_q(x,-x)) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 16*x^5/5 + 22*x^6/6 + ... (A152399).
		

Crossrefs

Cf. A152399: log(e_q(x, -x)); A227681, A306749.

Programs

  • PARI
    a(n)=polcoeff(sum(k=0,n,x^k/(prod(j=1,k,(1-(-x)^j)/(1+x))+x*O(x^n))),n)
    
  • PARI
    a(n)=polcoeff(exp(sum(k=1,n,x^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)),n)
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1,n,1+(1+x)*(-x)^k+x*O(x^n)),n)} \\ Paul D. Hanna, Dec 20 2008

Formula

G.f.: e_q(x,-x) = Sum_{n>=0} x^n/(Product_{k=1..n} (1-(-x)^k)/(1+x)).
G.f.: e_q(x,-x) = exp( Sum_{n>=1} x^n*(1+x)^n/(1-(-x)^n)/n ).
G.f.: 1/Product_{k>0} 1+(1+x)*(-x)^k. - Vladeta Jovovic, Dec 19 2008
a(n) ~ c/r^n where r = (sqrt(5) - 1)/2 = 0.6180339887... and c = 0.652419554233497352459208493304650..., where e_q(-r,r) = 0.887276226980250304353751667447441... - Paul D. Hanna, Dec 20 2008
c = 1 / (r * sqrt(5) * QPochhammer((1-sqrt(5))/2)). - Vaclav Kotesovec, Oct 22 2020