cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A198197 The q-exponential of x, E_q(x,q), evaluated at q=-x.

Original entry on oeis.org

1, 1, 0, -1, -1, -1, -2, -3, -3, -2, 0, 2, 2, 0, -1, 2, 8, 12, 11, 8, 7, 7, 5, 2, 1, 2, 4, 7, 7, -3, -21, -34, -34, -28, -28, -37, -46, -42, -22, -1, -1, -28, -62, -75, -60, -35, -16, 1, 25, 53, 77, 93, 97, 90, 91, 121, 165, 175, 129, 70, 64, 127, 213, 267, 273, 261, 278, 329, 340, 225, 11, -155, -160, -50, 25, -40, -223, -406, -475
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2011

Keywords

Comments

This q-exponential of x is defined by:
E_q(x,q) = Sum_{n>=0} q^(n*(n-1)/2) * x^n/faq(n,q),
where
log(E_q(x,q)) = Sum_{n>=1} (q-1)^n/(q^n-1) * x^n/n,
and faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.
See A152398 for the dual q-exponential function.

Examples

			G.f.: E_q(x,-x) = 1 + x - x^3 - x^4 - x^5 - 2*x^6 - 3*x^7 - 3*x^8 +...
where
E_q(x,-x) = 1 + x - x^3/(1-x) - x^6/((1-x)*(1-x+x^2)) + x^10/((1-x)*(1-x+x^2)*(1-x+x^2-x^3)) + x^15/((1-x)*(1-x+x^2)*(1-x+x^2-x^3)*(1-x+x^2-x^3+x^4)) +...
The g.f. equals the product:
E_q(x,-x) = (1 + (1+x)*x) * (1 - (1+x)*x^2) * (1 + (1+x)*x^3) * (1 - (1+x)*x^4) * (1 + (1+x)*x^5) * (1 - (1+x)*x^6) *...
The logarithm of the g.f. equals the series:
log(E_q(x,-x)) = x - (1+x)^2/(1-x^2)*x^2/2 + (1+x)^3/(1+x^3)*x^3/3 - (1+x)^4/(1-x^4)*x^4/4 + (1+x)^5/(1+x^5)*x^5/5 - (1+x)^6/(1-x^6)*x^6/6 +...
more explicitly,
log(E_q(x,-x)) = x - x^2/2 - 2*x^3/3 - x^4/4 - 4*x^5/5 - 10*x^6/6 - 13*x^7/7 - 17*x^8/8 - 20*x^9/9 - 16*x^10/10 +...
		

Crossrefs

Cf. A198262 (log), A152398 (e_q), A198199, A198200.

Programs

  • PARI
    {a(n)=local(E_q=sum(k=0, n, (-x)^(k*(k-1)/2)*x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n))));polcoeff(E_q, n)}
    
  • PARI
    {a(n)=local(q=-x,E_q=exp(sum(k=1, n, (q-1)^k/(q^k-1) * x^k/k)+x*O(x^n)));polcoeff(E_q, n)}
    
  • PARI
    {a(n)=polcoeff(prod(k=1, n, 1-(1+x)*(-x)^k+x*O(x^n)), n)}

Formula

G.f.: E_q(x,-x) = Sum_{n>=0} (-x)^(n*(n-1)/2) * x^n/Product_{k=1..n} (1 - (-x)^k)/(1+x).
G.f.: E_q(x,-x) = exp( Sum_{n>=1} -(1+x)^n/(1-(-x)^n) * (-x)^n/n ).
G.f.: E_q(x,-x) = Product_{n>=1} (1 - (1+x)*(-x)^n).

A198199 G.f.: q-Cosh(x,q)^2 - q-Sinh(x,q)^2 at q=-x.

Original entry on oeis.org

1, 0, -1, -2, -2, -2, -1, 2, 5, 6, 7, 10, 12, 8, -1, -8, -11, -16, -26, -38, -50, -58, -52, -30, -8, 0, 4, 24, 63, 112, 170, 232, 268, 252, 208, 186, 193, 190, 154, 92, -5, -164, -383, -630, -873, -1062, -1128, -1080, -1055, -1172, -1374, -1508, -1508, -1392, -1139, -700, -85, 684, 1627, 2652, 3455
Offset: 0

Views

Author

Paul D. Hanna, Oct 22 2011

Keywords

Comments

This sequence illustrates in part the identities:
* q-Cosh(x,q)^2 - q-Sinh(x,q)^2 = E_q(x,q) / e_q(x,q),
* q-cosh(x,q)^2 - q-sinh(x,q)^2 = e_q(x,q) / E_q(x,q).
Here the following q-analogs are employed (see MathWorld links):
q-cosh(x,q) = Sum_{n>=0} x^(2*n)/faq(2*n,q),
q-sinh(x,q) = Sum_{n>=0} x^(2*n+1)/faq(2*n+1,q),
and the dual expressions:
q-Cosh(x,q) = Sum_{n>=0} q^(n*(2*n-1))*x^(2*n)/faq(2*n,q),
q-Sinh(x,q) = Sum_{n>=0} q^(n*(2*n+1))*x^(2*n+1)/faq(2*n+1,q),
along with the dual q-exponential functions of x:
e_q(x,q) = Sum_{n>=0} x^n/faq(n,q),
E_q(x,q) = Sum_{n>=0} q^(n*(n-1)/2) * x^n/faq(n,q),
where
faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.

Examples

			G.f.: A(x) = 1 - x^2 - 2*x^3 - 2*x^4 - 2*x^5 - x^6 + 2*x^7 + 5*x^8 +...
The g.f. may be expressed by:
(0) A(x) = q-Cosh(x,q)^2 - q-Sinh(x,q)^2 at q=-x, where
q-Cosh(x,-x) = 1 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 + 2*x^11 + 3*x^12 + 2*x^13 + x^14 + 2*x^15 +...
q-Sinh(x,-x) = x - x^6 - 2*x^7 - 2*x^8 - x^9 - x^12 - 2*x^13 - 2*x^14 + 4*x^16 +...
q-Cosh(x,-x)^2 = 1 - 2*x^3 - 2*x^4 - 2*x^5 - x^6 + x^8 + 2*x^9 + 5*x^10 + 10*x^11 + 13*x^12 +...
q-Sinh(x,-x)^2 = x^2 - 2*x^7 - 4*x^8 - 4*x^9 - 2*x^10 + x^12 + 2*x^13 + 4*x^14 + 6*x^15 +...
(1) A(x) = E_q(x,q) / e_q(x,q) at q=-x, where
e_q(x,-x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 11*x^6 + 17*x^7 + 28*x^8 + 48*x^9 + 80*x^10 + 128*x^11 + 204*x^12 +...
E_q(x,-x) = 1 + x - x^3 - x^4 - x^5 - 2*x^6 - 3*x^7 - 3*x^8 - 2*x^9 + 2*x^11 + 2*x^12 +...
(2) -log(A(x)) = (1+x)^2/(1-x^2)*x^2 + (1+x)^4/(1-x^4)*x^4/2 + (1+x)^6/(1-x^6)*x^6/3 + (1+x)^8/(1-x^8)*x^8/4 +...
(3) A(x) = (1 - x^2*(1+x)^2) * (1 - x^4*(1+x)^2) * (1 - x^6*(1+x)^2) * (1 - x^8*(1+x)^2) * (1 - x^10*(1+x)^2) *...
		

Crossrefs

Cf. A198200 (dual), A152398 (e_q), A198197 (E_q), A198242 (q-Cosh), A198243 (q-Sinh), A198201 (q-cosh), A198202 (q-sinh).

Programs

  • PARI
    /* (0) G.f. q-Cosh(x,q)^2 - q-Sinh(x,q)^2 at q=-x: */
    {a(n)=local(Cosh_q=sum(k=0, n, (-x)^(k*(2*k-1))*x^(2*k)/(prod(j=1, 2*k, (1-(-x)^j)/(1+x))+x*O(x^n))),Sinh_q=sum(k=0, n, (-x)^(k*(2*k+1))*x^(2*k+1)/(prod(j=1, 2*k+1, (1-(-x)^j)/(1+x))+x*O(x^n))));polcoeff(Cosh_q^2-Sinh_q^2, n)}
    
  • PARI
    /* (1) G.f. E_q(x,q) / e_q(x,q) at q=-x: */
    {a(n)=local(e_q=sum(k=0, n, x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n))),E_q=sum(k=0, n, (-x)^(k*(k-1)/2)*x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n))));polcoeff(E_q/e_q, n)}
    
  • PARI
    /* (1) G.f. E_q(x,q) / e_q(x,q) at q=-x: */
    {a(n)=local(e_q=exp(sum(k=1, n, x^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)), E_q=exp(sum(k=1, n, -(-x)^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)));polcoeff(E_q/e_q, n)}
    
  • PARI
    /* (2) G.f. exp( -Sum_{n>=1} (1+x)^(2*n)/(1-x^(2*n)) * x^(2*n)/n): */
    {a(n)=polcoeff( exp( -sum(m=1,n\2+1,(1+x)^(2*m)/(1-x^(2*m)+x*O(x^n))*x^(2*m)/m)),n)}
    
  • PARI
    /* (3) G.f. Product_{n>=1} (1 - x^(2*n)*(1+x)^2): */
    {a(n)=polcoeff(prod(k=1, n, 1-(1+x)^2*x^(2*k)+x*O(x^n)), n)}

Formula

(1) G.f.: E_q(x,q) / e_q(x,q) at q=-x, where
e_q(x,-x) = Sum_{n>=0} x^n/Product(k=1, n, (1 - (-x)^k)/(1+x)),
E_q(x,-x) = Sum_{n>=0} (-x)^(n*(n-1)/2) * x^n/Product(k=1, n, (1 - (-x)^k)/(1+x)).
(2) G.f.: exp( -Sum_{n>=1} (1+x)^(2*n)/(1-x^(2*n)) * x^(2*n)/n ).
(3) G.f.: Product_{n>=1} (1 - x^(2*n)*(1+x)^2).
(4) Given g.f. A(x), A( (sqrt(5)-1)/2 ) = 0.

A198200 G.f.: q-cosh(x,q)^2 - q-sinh(x,q)^2 at q=-x.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 10, 16, 28, 48, 79, 130, 215, 356, 587, 960, 1566, 2558, 4176, 6804, 11066, 17978, 29198, 47406, 76916, 124716, 202152, 327600, 530775, 859734, 1392265, 2254336, 3649840, 5908632, 9564377, 15480706, 25055322, 40549980, 65624224, 106199306, 171856555, 278099872
Offset: 0

Views

Author

Paul D. Hanna, Oct 22 2011

Keywords

Comments

This sequence illustrates in part the identities:
* q-cosh(x,q)^2 - q-sinh(x,q)^2 = e_q(x,q) / E_q(x,q),
* q-Cosh(x,q)^2 - q-Sinh(x,q)^2 = E_q(x,q) / e_q(x,q).
Here the following q-analogs are employed (see MathWorld links):
q-cosh(x,q) = Sum_{n>=0} x^(2*n)/faq(2*n,q),
q-sinh(x,q) = Sum_{n>=0} x^(2*n+1)/faq(2*n+1,q),
and the dual expressions:
q-Cosh(x,q) = Sum_{n>=0} q^(n*(2*n-1))*x^(2*n)/faq(2*n,q),
q-Sinh(x,q) = Sum_{n>=0} q^(n*(2*n+1))*x^(2*n+1)/faq(2*n+1,q),
along with the dual q-exponential functions of x:
e_q(x,q) = Sum_{n>=0} x^n/faq(n,q),
E_q(x,q) = Sum_{n>=0} q^(n*(n-1)/2) * x^n/faq(n,q),
where
faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.

Examples

			G.f.: A(x) = 1 + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 16*x^7 + 28*x^8 +...
The g.f. may be expressed by:
(0) A(x) = q-cosh(x,q)^2 - q-sinh(x,q)^2 at q=-x, where
q-cosh(x,-x) = 1 + x^2 + x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 9*x^7 + 15*x^8 + 25*x^9 + 41*x^10 + 66*x^11 + 105*x^12 +...
q-sinh(x,-x) = x + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 8*x^7 + 13*x^8 + 23*x^9 + 39*x^10 + 62*x^11 + 99*x^12 +...
q-cosh(x,-x)^2 = 1 + 2*x^2 + 2*x^3 + 5*x^4 + 10*x^5 + 17*x^6 + 30*x^7 + 54*x^8 + 96*x^9 + 170*x^10 + 296*x^11 + 510*x^12 +...
q-sinh(x,-x)^2 = x^2 + 2*x^4 + 4*x^5 + 7*x^6 + 14*x^7 + 26*x^8 + 48*x^9 + 91*x^10 + 166*x^11 + 295*x^12 +...
(1) A(x) = e_q(x,q) / E_q(x,q) at q=-x, where
e_q(x,-x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 11*x^6 + 17*x^7 + 28*x^8 + 48*x^9 + 80*x^10 + 128*x^11 + 204*x^12 +...
E_q(x,-x) = 1 + x - x^3 - x^4 - x^5 - 2*x^6 - 3*x^7 - 3*x^8 - 2*x^9 + 2*x^11 + 2*x^12 +...
(2) log(A(x)) = (1+x)^2/(1-x^2)*x^2 + (1+x)^4/(1-x^4)*x^4/2 + (1+x)^6/(1-x^6)*x^6/3 + (1+x)^8/(1-x^8)*x^8/4 +...
(3) A(x) = 1/((1 - x^2*(1+x)^2) * (1 - x^4*(1+x)^2) * (1 - x^6*(1+x)^2) * (1 - x^8*(1+x)^2) * (1 - x^10*(1+x)^2) *...).
		

Crossrefs

Cf. A198199 (dual), A152398 (e_q), A198197 (E_q), A198201 (q-cosh), A198202 (q-sinh), A198242 (q-Cosh), A198243 (q-Sinh).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^(2*k)*(1+x)^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 22 2020 *)
  • PARI
    /* (0) G.f. q-cosh(x,q)^2 - q-sinh(x,q)^2 at q=-x: */
    {a(n)=local(cosh_q=sum(k=0, n, x^(2*k)/(prod(j=1, 2*k, (1-(-x)^j)/(1+x))+x*O(x^n))),sinh_q=sum(k=0, n, x^(2*k+1)/(prod(j=1, 2*k+1, (1-(-x)^j)/(1+x))+x*O(x^n))));polcoeff(cosh_q^2-sinh_q^2, n)}
    
  • PARI
    /* (1) G.f. e_q(x,q) / E_q(x,q) at q=-x: */
    {a(n)=local(e_q=sum(k=0, n, x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n))),E_q=sum(k=0, n, (-x)^(k*(k-1)/2)*x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n))));polcoeff(e_q/E_q, n)}
    
  • PARI
    /* (1) G.f. e_q(x,q) / E_q(x,q) at q=-x: */
    {a(n)=local(e_q=exp(sum(k=1, n, x^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)), E_q=exp(sum(k=1, n, -(-x)^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)));polcoeff(e_q/E_q, n)}
    
  • PARI
    /* (2) G.f. exp( Sum_{n>=1} (1+x)^(2*n)/(1-x^(2*n)) * x^(2*n)/n): */
    {a(n)=polcoeff( exp( sum(m=1,n\2+1,(1+x)^(2*m)/(1-x^(2*m)+x*O(x^n))*x^(2*m)/m)),n)}
    
  • PARI
    /* (3) G.f. Product_{n>=1} 1/(1 - x^(2*n)*(1+x)^2): */
    {a(n)=polcoeff(1/prod(k=1, n, 1-(1+x)^2*x^(2*k)+x*O(x^n)), n)}

Formula

(1) G.f.: e_q(x,q) / E_q(x,q) at q=-x, where
e_q(x,-x) = Sum_{n>=0} x^n/Product_{k=1..n} (1-(-x)^k)/(1+x),
E_q(x,-x) = Sum_{n>=0} (-x)^(n*(n-1)/2) * x^n/Product_{k=1..n} (1-(-x)^k)/(1+x).
(2) G.f.: exp( Sum_{n>=1} (1+x)^(2*n)/(1-x^(2*n)) * x^(2*n)/n ).
(3) G.f.: Product_{n>=1} 1/(1 - x^(2*n)*(1+x)^2).
(4) Limit a(n+1)/a(n) = phi = (sqrt(5)+1)/2 with Limit a(n)/phi^n = 0.75149846280232258786564518960536101986114488526276981847216113150440...
Limit a(n)/phi^n = phi / (2*sqrt(5)) * Product_{k>=2} 1/(1 - phi^(2 - 2*k)). - Vaclav Kotesovec, Oct 22 2020

A198242 G.f.: q-Cosh(x) evaluated at q=-x.

Original entry on oeis.org

1, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 2, 3, 2, 1, 2, 4, 5, 5, 5, 5, 4, 1, -3, -5, -4, -2, -1, -3, -9, -15, -16, -14, -15, -21, -29, -33, -26, -7, 12, 14, -3, -21, -22, -7, 9, 16, 17, 20, 31, 52, 75, 84, 76, 72, 92, 124, 131, 91, 27, -8, 18, 83, 132, 127, 81, 46, 55
Offset: 0

Views

Author

Paul D. Hanna, Aug 07 2012

Keywords

Comments

Note: q-Cosh(x) = Sum_{n>=0} x^(2*n) * q^(n*(2*n-1)) / Product_{k=1..2*n} (1-q^k)/(1-q).

Examples

			G.f.: 1 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 + 2*x^11 + 3*x^12 +...
		

Crossrefs

Cf. A152398 (e_q), A198197 (E_q), A198243 (q-Sinh), A198201 (q-cosh), A198202 (q-sinh).

Programs

  • PARI
    {a(n)=local(Cosh_q=sum(k=0, sqrtint(n+4), (-x)^(k*(2*k-1))*x^(2*k)/(prod(j=1, 2*k, (1-(-x)^j)/(1+x)+x*O(x^n))))); polcoeff(Cosh_q, n)}
    for(n=0,81,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} x^(2*n) * (-x)^(n*(2*n-1)) / Product_{k=1..2*n} (1-(-x)^k)/(1+x).

A198201 G.f.: q-cosh(x) evaluated at q=-x.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 6, 9, 14, 18, 18, 16, 67, 67, 66, 72, 84, 99, 117, 138, 159, 468, 516, 578, 679, 810, 933, 1018, 1072, 1138, 1262, 1448, 4745, 5196, 5851, 6630, 7382, 8031, 8649, 9405, 10409, 11569, 12649, 13530, 14378, 51022, 55567, 60439, 65906, 71953, 78283
Offset: 0

Views

Author

Paul D. Hanna, Aug 07 2012

Keywords

Comments

Note: q-cosh(x) = Sum_{n>=0} x^(2*n) / Product_{k=1..2*n} (1-q^k)/(1-q).

Examples

			 G.f.: 1 + x^2 + x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 9*x^7 + 14*x^8 + 18*x^9 +...
		

Crossrefs

Cf. A152398 (e_q), A198197 (E_q), A198242 (q-Cosh), A198243 (q-Sinh), A198202 (q-sinh).

Programs

  • PARI
    {a(n)=local(Cosh_q=sum(k=0, sqrtint(n+4), x^(2*k)/(prod(j=1, 2*k, (1-(-x)^j)/(1+x)+x*O(x^n))))); polcoeff(Cosh_q, n)}
    for(n=0,81,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} x^(2*n) / Product_{k=1..2*n} (1-(-x)^k)/(1+x).

A198202 G.f.: q-sinh(x) evaluated at q=-x.

Original entry on oeis.org

1, 0, 1, 2, 3, 5, 8, 13, 22, 31, 32, 89, 115, 126, 122, 118, 127, 150, 178, 198, 653, 747, 835, 921, 1011, 1113, 1236, 1377, 1520, 1661, 1823, 6483, 6894, 7584, 8646, 9906, 11074, 11995, 12787, 13752, 15105, 16742, 18316, 19608, 71188, 78144, 84610, 90794, 97895
Offset: 1

Views

Author

Paul D. Hanna, Aug 07 2012

Keywords

Comments

Note: q-sinh(x) = Sum_{n>=0} x^(2*n+1) / Product_{k=1..2*n+1} (1-q^k)/(1-q).

Examples

			G.f.: x + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 8*x^7 + 13*x^8 + 22*x^9 + 31*x^10 +...
		

Crossrefs

Cf. A152398 (e_q), A198197 (E_q), A198242 (q-Cosh), A198243 (q-Sinh), A198201 (q-cosh).

Programs

  • PARI
    {a(n)=local(Sinh_q=sum(k=0, sqrtint(n+4), x^(2*k+1)/(prod(j=1, 2*k+1, (1-(-x)^j)/(1+x))+x*O(x^n)))); polcoeff(Sinh_q, n)}
    for(n=0,81,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} x^(2*n+1) / Product_{k=1..2*n+1} (1-(-x)^k)/(1+x).

A198243 G.f.: q-Sinh(x) evaluated at q=-x.

Original entry on oeis.org

1, 0, 0, 0, 0, -1, -2, -2, -1, 0, 0, -1, -2, -2, 0, 4, 7, 6, 3, 2, 3, 4, 5, 6, 6, 6, 8, 10, 6, -6, -18, -20, -13, -7, -8, -13, -16, -15, -13, -15, -25, -41, -53, -53, -44, -32, -16, 5, 22, 25, 18, 13, 14, 19, 29, 41, 44, 38, 43, 72, 109, 130, 135, 146, 180, 232, 274
Offset: 1

Views

Author

Paul D. Hanna, Aug 07 2012

Keywords

Comments

Note: q-Sinh(x) = Sum_{n>=0} x^(2*n+1) * q^(n*(2*n+1)) / Product_{k=1..2*n+1} (1-q^k)/(1-q).

Examples

			G.f.: x - x^6 - 2*x^7 - 2*x^8 - x^9 - x^12 - 2*x^13 - 2*x^14 + 4*x^16 + 7*x^17 +...
		

Crossrefs

Cf. A152398 (e_q), A198197 (E_q), A198242 (q-Cosh), A198201 (q-cosh), A198202 (q-sinh).

Programs

  • PARI
    {a(n)=local(Sinh_q=sum(k=0, sqrtint(n+4), (-x)^(k*(2*k+1))*x^(2*k+1)/(prod(j=1, 2*k+1, (1-(-x)^j)/(1+x))+x*O(x^n)))); polcoeff(Sinh_q, n)}
    for(n=0,81,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} x^(2*n+1) * (-x)^(n*(2*n+1)) / Product_{k=1..2*n+1} (1-(-x)^k)/(1+x).

A306749 Expansion of Product_{k>=1} 1/(1 - x^k * (1 - x)).

Original entry on oeis.org

1, 1, 1, 0, 0, -1, 1, -1, 2, -2, 2, -4, 6, -8, 11, -13, 16, -23, 32, -44, 61, -80, 102, -133, 178, -243, 331, -441, 579, -759, 1001, -1335, 1792, -2398, 3186, -4205, 5537, -7320, 9734, -12975, 17266, -22893, 30267, -40004, 52968, -70282, 93348, -123900, 164179, -217277
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    m = 49; CoefficientList[Series[Product[1/(1 - x^k * (1 - x)), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k*(1-x)))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (1 - x)^d/d). - Ilya Gutkovskiy, Apr 16 2019

A152399 Log of the q-exponential of x, e_q(x,q), evaluated at q=-x.

Original entry on oeis.org

1, 1, 4, 9, 16, 22, 29, 49, 94, 156, 221, 318, 521, 883, 1429, 2257, 3605, 5836, 9463, 15264, 24539, 39579, 64148, 103990, 168141, 271623, 439276, 711055, 1150750, 1861287, 3010318, 4870449, 7881944, 12754455, 20635589, 33385764, 54018447
Offset: 1

Views

Author

Paul D. Hanna, Dec 16 2008

Keywords

Comments

The g.f.s for this sequence illustrates the following formula:
log(e_q(x,q)) = Sum_{n>=1} (1-q)^n/(1-q^n)*x^n/n, where
e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential of x and
faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.

Examples

			L.g.f.: log(e_q(x,-x)) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 16*x^5/5 + 22*x^6/6 +...
e_q(x,-x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 11*x^6 + 17*x^7 +... (A152398).
		

Crossrefs

Cf. A152398 (e_q(x, -x)).

Programs

  • PARI
    a(n)=n*polcoeff(log(sum(k=0,n,x^k/(prod(j=1,k,(1-(-x)^j)/(1+x))+x*O(x^n)))),n)
    
  • PARI
    a(n)=polcoeff(sum(k=1,n,x^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n),n)

Formula

L.g.f.: log(e_q(x,-x)) = log(Sum_{n>=0} x^n/[Product_{k=1..n} (1-(-x)^k)/(1+x)]).
L.g.f.: log(e_q(x,-x)) = Sum_{n>=1} x^n*(1+x)^n/(1-(-x)^n)/n.
Showing 1-9 of 9 results.