cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152427 Primes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9).

Original entry on oeis.org

13, 17, 29, 31, 43, 47, 59, 67, 71, 79, 83, 97, 103, 107, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 193, 197, 211, 229, 239, 241, 251, 263, 269, 271, 281, 283, 293, 311, 313, 317, 331, 347, 349, 359, 367, 379, 383, 389, 397, 421, 431, 433, 439
Offset: 1

Views

Author

Omar E. Pol, Dec 03 2008

Keywords

Comments

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{d = Union[IntegerDigits[n]]}, Length[Intersection[d, {2, 3, 5, 7}]] > 0 && Length[Intersection[d, {1, 4, 6, 8, 9}]] > 0]; Select[Prime[Range[100]], okQ] (* T. D. Noe, Jan 21 2011 *)
    pdQ[n_]:=Module[{idn=Select[IntegerDigits[n],#!=0&]},Count[idn,?PrimeQ]>0&&Count[idn,?(!PrimeQ[#]&)]>0]; Select[Prime[Range[100]],pdQ] (* Harvey P. Dale, Jan 31 2013 *)

Formula

a(n) ~ n log n

Extensions

Corrected and extended by Harvey P. Dale, Jan 31 2013