cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152429 a(n) = (11^n + 5^n)/2.

Original entry on oeis.org

1, 8, 73, 728, 7633, 82088, 893593, 9782648, 107374753, 1179950408, 12973595113, 142680249368, 1569336258673, 17261966423528, 189877968549433, 2088639343496888, 22974941225731393, 252723895719373448
Offset: 0

Views

Author

Philippe Deléham, Dec 03 2008

Keywords

Comments

Binomial transform of A081343.
Inverse binomial transform of A143079.

Crossrefs

Cf. A162516.

Programs

  • GAP
    List([0..20], n-> (11^n+5^n)/2); # G. C. Greubel, Jan 08 2020
  • Magma
    [(11^n+5^n)/2: n in [0..20]]; // Vincenzo Librandi, Jun 01 2011
    
  • Maple
    seq( (11^n+5^n)/2, n=0..20); # G. C. Greubel, Jan 08 2020
  • Mathematica
    LinearRecurrence[{16,-55}, {1,8}, 20] (* G. C. Greubel, Jan 08 2020 *)
  • PARI
    vector(21, n, (11^(n-1) + 5^(n-1))/2 ) \\ G. C. Greubel, Jan 08 2020
    
  • Sage
    [(11^n+5^n)/2 for n in (0..20)] # G. C. Greubel, Jan 08 2020
    

Formula

a(n) = 16*a(n-1) - 55*a(n-2), with a(0)=1, a(1)=8.
G.f.: (1-8*x)/(1 - 16*x + 55*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*8^(2k-n)*9^(n-k).
a(n) = ((8 + sqrt(9))^n + (8 - sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
E.g.f.: (exp(11*x) + exp(5*x))/2. - G. C. Greubel, Jan 08 2020