A152534 Triangle T(n,k) read by rows with q-e.g.f.: 1/Product_{k>0} (1-x^k/faq(k,q)).
1, 1, 2, 1, 3, 3, 3, 1, 5, 7, 11, 11, 8, 4, 1, 7, 13, 25, 36, 44, 42, 36, 24, 13, 5, 1, 11, 24, 54, 93, 142, 184, 215, 222, 208, 172, 126, 81, 44, 19, 6, 1, 15, 39, 98, 195, 344, 532, 753, 964, 1150, 1264, 1294, 1226, 1082, 880, 661, 451, 278, 151, 70, 26, 7, 1
Offset: 0
Examples
Triangle begins: 1; 1; 2, 1; 3, 3, 3, 1; 5, 7, 11, 11, 8, 4, 1; 7, 13, 25, 36, 44, 42, 36, 24, 13, 5, 1; ...
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- Eric Weisstein's World of Mathematics, q-Exponential Function.
- Eric Weisstein's World of Mathematics, q-Factorial.
Crossrefs
Programs
-
Maple
multinomial2q := proc(n::integer,k::integer,nparts::integer) local lpar ,res, constrp; res := [] ; if n< 0 or nparts <= 0 then ; elif nparts = 1 then if n = k then return [[n]] ; end if; else for lpar from 0 do if lpar*nparts > n or lpar > k then break; end if; for constrp in procname(n-nparts*lpar,k-lpar,nparts-1) do if nops(constrp) > 0 then res := [op(res),[op(constrp),lpar]] ; end if; end do: end do: end if ; return res ; end proc: multinomial2 := proc(n::integer,k::integer) local res,constrp ; res := [] ; for constrp in multinomial2q(n,k,n) do if nops(constrp) > 0 then res := [op(res),constrp] ; end if ; end do: res ; end proc: faq := proc(i,q) mul((q^j-1)/(q-1),j=1..i) ; end proc; A152534 := proc(n,k) pi := [] ; for sp from 0 to n do pi := [op(pi),op(multinomial2(n,sp))] ; end do; tqk := 0 ; for p in pi do faqe :=1 ; for i from 1 to nops(p) do faqe := faqe* faq(i,q)^op(i,p) ; end do: tqk := tqk+faq(n,q)/faqe ; end do; tqk ; coeftayl(tqk,q=0,k) ; end proc: for n from 1 to 8 do for k from 0 to binomial(n,2) do printf("%d,",A152534(n,k)) ; end do; printf("\n") ; end do: # R. J. Mathar, Sep 27 2011 # second Maple program: f:= proc(n) option remember; `if`(n<2, 1, f(n-1)*(q^n-1)/(q-1)) end: b:= proc(n, i) option remember; simplify(`if`(n=0 or i=1, 1, add(b(n-i*j, i-1)/f(i)^j, j=0..n/i))) end: T:= n-> (p-> seq(coeff(p, q, i), i=0..degree(p)))(simplify(f(n)*b(n$2))): seq(T(n), n=0..10); # Alois P. Heinz, Aug 09 2021
-
Mathematica
f[n_] := f[n] = If[n < 2, 1, f[n - 1]*(q^n - 1)/(q - 1)]; b[n_, i_] := b[n, i] = Simplify[If[n == 0 || i == 1, 1, Sum[b[n - i*j, i - 1]/f[i]^j, {j, 0, n/i}]]]; T[n_] := CoefficientList[Simplify[f[n]*b[n, n]], q]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)
Formula
Sum_{k=0..binomial(n,2)} T(n,k)*q^k = Sum_{pi} faq(n,q)/Product_{i=1..n} faq(i,q)^e(i), where pi runs over all nonnegative integer solutions to e(1) + 2*e(2) + ... + n*e(n) = n and faq(i,q) = Product_{j=1..i} (q^j-1)/(q-1), i = 1..n.
Sum_{k=0..binomial(n,2)} T(n,k)*exp(2*Pi*I*k/n) = 1.
Sum_{k=0..binomial(n,2)} (-1)^k*T(n,k) = A152536(n). - Alois P. Heinz, Aug 09 2021
Extensions
T(0,0)=1 prepended by Alois P. Heinz, Aug 09 2021