cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152535 a(n) = n*prime(n) - Sum_{i=1..n} prime(i).

Original entry on oeis.org

0, 1, 5, 11, 27, 37, 61, 75, 107, 161, 181, 247, 295, 321, 377, 467, 563, 597, 705, 781, 821, 947, 1035, 1173, 1365, 1465, 1517, 1625, 1681, 1797, 2217, 2341, 2533, 2599, 2939, 3009, 3225, 3447, 3599, 3833, 4073, 4155, 4575, 4661
Offset: 1

Views

Author

Omar E. Pol, Dec 06 2008

Keywords

Comments

a(n) is also the area under the curve of the function pi(x) from 0 to prime(n). - Omar E. Pol, Nov 13 2013

Examples

			From _Omar E. Pol_, Apr 27 2015: (Start)
For n = 5 the 5th prime is 11 and the sum of first five primes is 2 + 3 + 5 + 7 + 11 = 28, so a(5) = 5*11 - 28 = 27.
Illustration of a(5) = 27:
Consider a diagram in the first quadrant of the square grid in which the number of cells in the n-th horizontal bar is equal to the n-th prime, as shown below:
.      _ _ _ _ _ _ _ _ _ _ _
. 11  |_ _ _ _ _ _ _ _ _ _ _|
.  7  |_ _ _ _ _ _ _|* * * *
.  5  |_ _ _ _ _|* * * * * *
.  3  |_ _ _|* * * * * * * *
.  2  |_ _|* * * * * * * * *
.
a(5) is also the area (or the number of cells, or the number of *'s) under the bar's structure of prime numbers: a(5) = 1 + 4 + 6 + 16 = 27.
(End)
		

Crossrefs

Programs

  • Mathematica
    nn = 100; p = Prime[Range[nn]]; Range[nn] p - Accumulate[p] (* T. D. Noe, May 02 2011 *)
  • PARI
    vector(80, n, n*prime(n) - sum(k=1, n, prime(k))) \\ Michel Marcus, Apr 20 2015
    
  • Python
    from sympy import prime, primerange
    def A152535(n): return (n-1)*(p:=prime(n))-sum(primerange(p)) # Chai Wah Wu, Jan 01 2024
  • Sage
    [n*nth_prime(n) - sum(nth_prime(j) for j in range(1,n+1)) for n in range(1,45)] # Danny Rorabaugh, Apr 18 2015
    

Formula

a(n) = A033286(n) - A007504(n). - Omar E. Pol, Aug 09 2012
a(n) = A046992(A006093(n)). - Omar E. Pol, Apr 21 2015
a(n+1) = Sum_{k=A000124(n-1)..A000217(n)} A204890(k). - Benedict W. J. Irwin, May 23 2016
a(n) = Sum_{k=1..n-1} k*A001223(k). - François Huppé, Mar 16 2022