cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152548 Sum of squared terms in rows of triangle A152547: a(n) = Sum_{k=0..C(n,[n/2])-1} A152547(n,k)^2.

Original entry on oeis.org

1, 4, 10, 24, 54, 120, 260, 560, 1190, 2520, 5292, 11088, 23100, 48048, 99528, 205920, 424710, 875160, 1798940, 3695120, 7574996, 15519504, 31744440, 64899744, 132503644, 270415600, 551231800, 1123264800, 2286646200, 4653525600
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2008

Keywords

Crossrefs

Programs

  • Maple
    seq(simplify((-2)^n*hypergeom([-n,3/2], [1], 2)),n=0..29); # Peter Luschny, Apr 26 2016
  • Mathematica
    CoefficientList[Series[Sqrt[(1+2x)/(1-2x)^3],{x,0,30}],x] (* Harvey P. Dale, Jan 04 2016 *)
  • PARI
    a(n)=sum(k=0,floor((n+1)/2),binomial(n+1, k)*(n+1-2*k)^3)/(n+1)

Formula

G.f.: A(x) = sqrt( (1+2x)/(1-2x)^3 ).
a(n) = Sum_{k=0..[(n+1)/2]} C(n+1, k)*(n+1-2k)^3/(n+1).
a(n) = A107233(n)/(n+1).
Self-convolution equals A014477.
E.g.f.: ((1 + 4*x)*BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). - Peter Luschny, Aug 26 2012
a(n) = (-2)^n*hypergeom([-n,3/2], [1], 2). - Peter Luschny, Apr 26 2016
D-finite with recurrence: (n+1)*a(n+1) = 4*a(n) + 4*n*a(n-1). - Vladimir Reshetnikov, Oct 10 2016
a(n) ~ 2^(n + 3/2) * sqrt(n/Pi). - Vaclav Kotesovec, Oct 11 2016
From Peter Bala, Mar 31 2024: (Start)
a(n) = (2^n) * Sum_{k = 0..n} (-1)^(n+k)*binomial(1/2, k)*binomial(-3/2, n-k).
a(n) = (2^n) * Sum_{k = 0..n} (2^k)*binomial(n, k)*binomial(1/2, k).
a(n) = (2^n)* Sum_{k = 0..n} binomial(n, k)*binomial(k+1/2, n). See A008288.
a(n) = (2*n + 1)!/(2^n * n!^2) * hypergeom([-n, -1/2], [-n-1/2], -1).
a(n) = 2^n * hypergeom([-n, -1/2], [1], 2).
a(n) = (-1/2)^n * binomial(2*n, n)/(1 - 2*n) * hypergeom([-n, 3/2], [-n+3/2], -1).(End)