A152568 Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 2^(n - 1), T(n,k) = -2^(n - k - 1), 1 <= k <= n - 1.
-1, 1, -1, 2, -1, -1, 4, -2, -1, -1, 8, -4, -2, -1, -1, 16, -8, -4, -2, -1, -1, 32, -16, -8, -4, -2, -1, -1, 64, -32, -16, -8, -4, -2, -1, -1, 128, -64, -32, -16, -8, -4, -2, -1, -1, 256, -128, -64, -32, -16, -8, -4, -2, -1, -1, 512, -256, -128, -64, -32, -16, -8, -4, -2
Offset: 0
Examples
Triangle begins: -1; 1, -1; 2, -1, -1; 4, -2, -1, -1; 8, -4, -2, -1, -1; 16, -8, -4, -2, -1, -1; 32, -16, -8, -4, -2, -1, -1; 64, -32, -16, -8, -4, -2, -1, -1; 128, -64, -32, -16, -8, -4, -2, -1, -1; 256, -128, -64, -32, -16, -8, -4, -2, -1, -1; 512, -256, -128, -64, -32, -16, -8, -4, -2, -1, -1; ...
Programs
-
Mathematica
b[0] = {-1}; b[1] = {1, -1}; b[n_] := b[n] = Join[{2^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]] Flatten[Table[b[n], {n, 0, 10}]]
-
Maxima
T(n, k) := if k = n then -1 else if k = 0 then 2^(n - 1) else -2^(n - k - 1)$ create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */
Formula
From Franck Maminirina Ramaharo, Jan 08 2019: (Start)
G.f.: -(1 - 3*y + 2*x*y^2)/(1 - (2 + x)*y + 2*x*y^2).
E.g.f.: (exp(2*y) - exp(x*y))*(1 - x)/(2 - x) - 1. (End)
Extensions
Unrelated material removed by the Assoc. Eds. of the OEIS, Jun 07 2010
Comments