A152571
Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 4^(n - 1), T(n,k) = -4^(n - k - 1), 1 <= k <= n - 1.
Original entry on oeis.org
-1, 1, -1, 4, -1, -1, 16, -4, -1, -1, 64, -16, -4, -1, -1, 256, -64, -16, -4, -1, -1, 1024, -256, -64, -16, -4, -1, -1, 4096, -1024, -256, -64, -16, -4, -1, -1, 16384, -4096, -1024, -256, -64, -16, -4, -1, -1, 65536, -16384, -4096, -1024, -256, -64, -16, -4, -1, -1
Offset: 0
Triangle begins:
-1;
1, -1;
4, -1, -1;
16, -4, -1, -1;
64, -16, -4, -1, -1;
256, -64, -16, -4, -1, -1;
1024, -256, -64, -16, -4, -1, -1;
4096, -1024, -256, -64, -16, -4, -1, -1;
16384, -4096, -1024, -256, -64, -16, -4, -1, -1;
65536, -16384, -4096, -1024, -256, -64, -16, -4, -1, -1;
262144, -65536, -16384, -4096, -1024, -256, -64, -16, -4, -1, -1;
...
-
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{4^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
Flatten[Table[b[n], {n, 0, 10}]]
-
T(n, k) := if k = n then -1 else if k = 0 then 4^(n - 1) else -4^(n - k - 1)$
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */
A152570
Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 3^(n - 1), T(n,k) = -3^(n - k - 1), 1 <= k <= n - 1.
Original entry on oeis.org
-1, 1, -1, 3, -1, -1, 9, -3, -1, -1, 27, -9, -3, -1, -1, 81, -27, -9, -3, -1, -1, 243, -81, -27, -9, -3, -1, -1, 729, -243, -81, -27, -9, -3, -1, -1, 2187, -729, -243, -81, -27, -9, -3, -1, -1, 6561, -2187, -729, -243, -81, -27, -9, -3, -1, -1, 19683, -6561, -2187
Offset: 0
Triangle begins:
-1;
1, -1;
3, -1, -1;
9, -3, -1, -1;
27, -9, -3, -1, -1;
81, -27, -9, -3, -1, -1;
243, -81, -27, -9, -3, -1, -1;
729, -243, -81, -27, -9, -3, -1, -1;
2187, -729, -243, -81, -27, -9, -3, -1, -1;
6561, -2187, -729, -243, -81, -27, -9, -3, -1, -1;
19683, -6561, -2187, -729, -243, -81, -27, -9, -3, -1, -1;
...
-
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{3^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
Flatten[Table[b[n], {n, 0, 10}]]
-
T(n,k) := if k = n then -1 else if k = 0 then 3^(n - 1) else -3^(n - k - 1)$
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */
A152572
Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 5^(n - 1), T(n,k) = -5^(n - k - 1), 1 <= k <= n - 1.
Original entry on oeis.org
-1, 1, -1, 5, -1, -1, 25, -5, -1, -1, 125, -25, -5, -1, -1, 625, -125, -25, -5, -1, -1, 3125, -625, -125, -25, -5, -1, -1, 15625, -3125, -625, -125, -25, -5, -1, -1, 78125, -15625, -3125, -625, -125, -25, -5, -1, -1, 390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1
Offset: 0
Triangle begins:
-1;
1, -1;
5, -1, -1;
25, -5, -1, -1;
125, -25, -5, -1, -1;
625, -125, -25, -5, -1, -1;
3125, -625, -125, -25, -5, -1, -1;
15625, -3125, -625, -125, -25, -5, -1, -1;
78125, -15625, -3125, -625, -125, -25, -5, -1, -1;
390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1;
1953125, -390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1;
...
-
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{5^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
Flatten[Table[b[n], {n, 0, 10}]]
-
T(n, k) := if k = n then -1 else if k = 0 then 5^(n - 1) else -5^(n - k - 1);
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */
A152722
Triangle read by rows: T(n,0) = prime(n+2), T(n,1) = 1 - T(n,0), T(n,k) = T(n-1,k-1), T(1,0) = 1 T(n,n) = -1.
Original entry on oeis.org
-1, 1, -1, 7, -6, -1, 11, -10, -6, -1, 13, -12, -10, -6, -1, 17, -16, -12, -10, -6, -1, 19, -18, -16, -12, -10, -6, -1, 23, -22, -18, -16, -12, -10, -6, -1, 29, -28, -22, -18, -16, -12, -10, -6, -1, 31, -30, -28, -22, -18, -16, -12, -10, -6, -1, 37, -36, -30, -28, -22, -18, -16, -12, -10, -6, -1
Offset: 0
Triangle begins as:
-1;
1, -1;
7, -6, -1;
11, -10, -6, -1;
13, -12, -10, -6, -1;
17, -16, -12, -10, -6, -1;
19, -18, -16, -12, -10, -6, -1;
23, -22, -18, -16, -12, -10, -6, -1;
29, -28, -22, -18, -16, -12, -10, -6, -1;
-
T[n_, n_]:= -1; T[1, 0]:= 1; T[n_, 0]:= Prime[n+2]; T[n_, 1]:= 1 - Prime[n+2]; T[n_, k_]:= T[n-1, k-1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 07 2019 *)
-
{T(n,k) = if(k==n, -1, if(n==1 && k==0, 1, if(k==0, prime(n+2), if(k==1, 1-prime(n+2), T(n-1,k-1) ))))}; \\ G. C. Greubel, Apr 07 2019
-
@CachedFunction
def T(n,k):
if k==n: return -1
elif n==1 and k==0: return 1
elif k==0: return nth_prime(n+2)
elif k==1: return 1 - nth_prime(n+2)
else: return T(n-1,k-1)
[[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 07 2019
A152720
A prime-based vector recursion: a(n)={Prime[n],Prime[n-1],-Prime[n-2],...,-1,-1}.
Original entry on oeis.org
-1, 1, -1, 3, -1, -1, 5, -3, -1, -1, 7, -5, -3, -1, -1, 11, -7, -5, -3, -1, -1, 13, -11, -7, -5, -3, -1, -1, 17, -13, -11, -7, -5, -3, -1, -1, 19, -17, -13, -11, -7, -5, -3, -1, -1, 23, -19, -17, -13, -11, -7, -5, -3, -1, -1, 29, -23, -19, -17, -13, -11, -7, -5, -3, -1, -1
Offset: 0
{-1},
{1, -1},
{3, -1, -1},
{5, -3, -1, -1},
{7, -5, -3, -1, -1},
{11, -7, -5, -3, -1, -1},
{13, -11, -7, -5, -3, -1, -1},
{17, -13, -11, -7, -5, -3, -1, -1},
{19, -17, -13, -11, -7, -5, -3, -1, -1},
{23, -19, -17, -13, -11, -7, -5, -3, -1, -1},
{29, -23, -19, -17, -13, -11, -7, -5, -3, -1, -1}
-
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{Prime[n ]}, {-b[n - 1][[ 1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
Table[b[n], {n, 0, 10}]; Flatten[%]
A152721
A prime based vector recursion: a(n)={Prime[n+1],Prime[n],Prime[n-1],-Prime[n-2],...,-1,-1}.
Original entry on oeis.org
-1, 1, -1, 5, -1, -1, 7, -5, -1, -1, 11, -7, -5, -1, -1, 13, -11, -7, -5, -1, -1, 17, -13, -11, -7, -5, -1, -1, 19, -17, -13, -11, -7, -5, -1, -1, 23, -19, -17, -13, -11, -7, -5, -1, -1, 29, -23, -19, -17, -13, -11, -7, -5, -1, -1, 31, -29, -23, -19, -17, -13, -11, -7, -5
Offset: 0
{-1},
{1, -1},
{5, -1, -1},
{7, -5, -1, -1},
{11, -7, -5, -1, -1},
{13, -11, -7, -5, -1, -1},
{17, -13, -11, -7, -5, -1, -1},
{19, -17, -13, -11, -7, -5, -1, -1},
{23, -19, -17, -13, -11, -7, -5, -1, -1},
{29, -23, -19, -17, -13, -11, -7, -5, -1, -1},
{31, -29, -23, -19, -17, -13, -11, -7, -5, -1, -1}
-
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{Prime[n + 1 ]}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
Table[b[n], {n, 0, 10}]; Flatten[%]
Showing 1-6 of 6 results.
Comments