A152568
Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 2^(n - 1), T(n,k) = -2^(n - k - 1), 1 <= k <= n - 1.
Original entry on oeis.org
-1, 1, -1, 2, -1, -1, 4, -2, -1, -1, 8, -4, -2, -1, -1, 16, -8, -4, -2, -1, -1, 32, -16, -8, -4, -2, -1, -1, 64, -32, -16, -8, -4, -2, -1, -1, 128, -64, -32, -16, -8, -4, -2, -1, -1, 256, -128, -64, -32, -16, -8, -4, -2, -1, -1, 512, -256, -128, -64, -32, -16, -8, -4, -2
Offset: 0
Triangle begins:
-1;
1, -1;
2, -1, -1;
4, -2, -1, -1;
8, -4, -2, -1, -1;
16, -8, -4, -2, -1, -1;
32, -16, -8, -4, -2, -1, -1;
64, -32, -16, -8, -4, -2, -1, -1;
128, -64, -32, -16, -8, -4, -2, -1, -1;
256, -128, -64, -32, -16, -8, -4, -2, -1, -1;
512, -256, -128, -64, -32, -16, -8, -4, -2, -1, -1;
...
-
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{2^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]]
Flatten[Table[b[n], {n, 0, 10}]]
-
T(n, k) := if k = n then -1 else if k = 0 then 2^(n - 1) else -2^(n - k - 1)$
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */
Unrelated material removed by the Assoc. Eds. of the OEIS, Jun 07 2010
A152571
Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 4^(n - 1), T(n,k) = -4^(n - k - 1), 1 <= k <= n - 1.
Original entry on oeis.org
-1, 1, -1, 4, -1, -1, 16, -4, -1, -1, 64, -16, -4, -1, -1, 256, -64, -16, -4, -1, -1, 1024, -256, -64, -16, -4, -1, -1, 4096, -1024, -256, -64, -16, -4, -1, -1, 16384, -4096, -1024, -256, -64, -16, -4, -1, -1, 65536, -16384, -4096, -1024, -256, -64, -16, -4, -1, -1
Offset: 0
Triangle begins:
-1;
1, -1;
4, -1, -1;
16, -4, -1, -1;
64, -16, -4, -1, -1;
256, -64, -16, -4, -1, -1;
1024, -256, -64, -16, -4, -1, -1;
4096, -1024, -256, -64, -16, -4, -1, -1;
16384, -4096, -1024, -256, -64, -16, -4, -1, -1;
65536, -16384, -4096, -1024, -256, -64, -16, -4, -1, -1;
262144, -65536, -16384, -4096, -1024, -256, -64, -16, -4, -1, -1;
...
-
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{4^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
Flatten[Table[b[n], {n, 0, 10}]]
-
T(n, k) := if k = n then -1 else if k = 0 then 4^(n - 1) else -4^(n - k - 1)$
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */
A152570
Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 3^(n - 1), T(n,k) = -3^(n - k - 1), 1 <= k <= n - 1.
Original entry on oeis.org
-1, 1, -1, 3, -1, -1, 9, -3, -1, -1, 27, -9, -3, -1, -1, 81, -27, -9, -3, -1, -1, 243, -81, -27, -9, -3, -1, -1, 729, -243, -81, -27, -9, -3, -1, -1, 2187, -729, -243, -81, -27, -9, -3, -1, -1, 6561, -2187, -729, -243, -81, -27, -9, -3, -1, -1, 19683, -6561, -2187
Offset: 0
Triangle begins:
-1;
1, -1;
3, -1, -1;
9, -3, -1, -1;
27, -9, -3, -1, -1;
81, -27, -9, -3, -1, -1;
243, -81, -27, -9, -3, -1, -1;
729, -243, -81, -27, -9, -3, -1, -1;
2187, -729, -243, -81, -27, -9, -3, -1, -1;
6561, -2187, -729, -243, -81, -27, -9, -3, -1, -1;
19683, -6561, -2187, -729, -243, -81, -27, -9, -3, -1, -1;
...
-
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{3^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
Flatten[Table[b[n], {n, 0, 10}]]
-
T(n,k) := if k = n then -1 else if k = 0 then 3^(n - 1) else -3^(n - k - 1)$
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */
Showing 1-3 of 3 results.
Comments