A152568
Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 2^(n - 1), T(n,k) = -2^(n - k - 1), 1 <= k <= n - 1.
Original entry on oeis.org
-1, 1, -1, 2, -1, -1, 4, -2, -1, -1, 8, -4, -2, -1, -1, 16, -8, -4, -2, -1, -1, 32, -16, -8, -4, -2, -1, -1, 64, -32, -16, -8, -4, -2, -1, -1, 128, -64, -32, -16, -8, -4, -2, -1, -1, 256, -128, -64, -32, -16, -8, -4, -2, -1, -1, 512, -256, -128, -64, -32, -16, -8, -4, -2
Offset: 0
Triangle begins:
-1;
1, -1;
2, -1, -1;
4, -2, -1, -1;
8, -4, -2, -1, -1;
16, -8, -4, -2, -1, -1;
32, -16, -8, -4, -2, -1, -1;
64, -32, -16, -8, -4, -2, -1, -1;
128, -64, -32, -16, -8, -4, -2, -1, -1;
256, -128, -64, -32, -16, -8, -4, -2, -1, -1;
512, -256, -128, -64, -32, -16, -8, -4, -2, -1, -1;
...
-
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{2^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]]
Flatten[Table[b[n], {n, 0, 10}]]
-
T(n, k) := if k = n then -1 else if k = 0 then 2^(n - 1) else -2^(n - k - 1)$
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */
Unrelated material removed by the Assoc. Eds. of the OEIS, Jun 07 2010
A152570
Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 3^(n - 1), T(n,k) = -3^(n - k - 1), 1 <= k <= n - 1.
Original entry on oeis.org
-1, 1, -1, 3, -1, -1, 9, -3, -1, -1, 27, -9, -3, -1, -1, 81, -27, -9, -3, -1, -1, 243, -81, -27, -9, -3, -1, -1, 729, -243, -81, -27, -9, -3, -1, -1, 2187, -729, -243, -81, -27, -9, -3, -1, -1, 6561, -2187, -729, -243, -81, -27, -9, -3, -1, -1, 19683, -6561, -2187
Offset: 0
Triangle begins:
-1;
1, -1;
3, -1, -1;
9, -3, -1, -1;
27, -9, -3, -1, -1;
81, -27, -9, -3, -1, -1;
243, -81, -27, -9, -3, -1, -1;
729, -243, -81, -27, -9, -3, -1, -1;
2187, -729, -243, -81, -27, -9, -3, -1, -1;
6561, -2187, -729, -243, -81, -27, -9, -3, -1, -1;
19683, -6561, -2187, -729, -243, -81, -27, -9, -3, -1, -1;
...
-
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{3^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
Flatten[Table[b[n], {n, 0, 10}]]
-
T(n,k) := if k = n then -1 else if k = 0 then 3^(n - 1) else -3^(n - k - 1)$
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */
A152572
Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 5^(n - 1), T(n,k) = -5^(n - k - 1), 1 <= k <= n - 1.
Original entry on oeis.org
-1, 1, -1, 5, -1, -1, 25, -5, -1, -1, 125, -25, -5, -1, -1, 625, -125, -25, -5, -1, -1, 3125, -625, -125, -25, -5, -1, -1, 15625, -3125, -625, -125, -25, -5, -1, -1, 78125, -15625, -3125, -625, -125, -25, -5, -1, -1, 390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1
Offset: 0
Triangle begins:
-1;
1, -1;
5, -1, -1;
25, -5, -1, -1;
125, -25, -5, -1, -1;
625, -125, -25, -5, -1, -1;
3125, -625, -125, -25, -5, -1, -1;
15625, -3125, -625, -125, -25, -5, -1, -1;
78125, -15625, -3125, -625, -125, -25, -5, -1, -1;
390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1;
1953125, -390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1;
...
-
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{5^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
Flatten[Table[b[n], {n, 0, 10}]]
-
T(n, k) := if k = n then -1 else if k = 0 then 5^(n - 1) else -5^(n - k - 1);
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */
A262616
Triangle read by rows: T(n,k) = 4^(n-k), n>=0, 0<=k<=n.
Original entry on oeis.org
1, 4, 1, 16, 4, 1, 64, 16, 4, 1, 256, 64, 16, 4, 1, 1024, 256, 64, 16, 4, 1, 4096, 1024, 256, 64, 16, 4, 1, 16384, 4096, 1024, 256, 64, 16, 4, 1, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1, 262144, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1, 1048576, 262144, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1
Offset: 0
Triangle begins:
1;
4, 1;
16, 4, 1;
64, 16, 4, 1;
256, 64, 16, 4, 1;
1024, 256, 64, 16, 4, 1;
4096, 1024, 256, 64, 16, 4, 1;
16384, 4096, 1024, 256, 64, 16, 4, 1;
65536, 16384, 4096, 1024, 256, 64, 16, 4, 1;
262144, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1;
1048576, 262144, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1;
4194304, 1048576, 262144, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1;
...
Row sums give the positive terms of
A002450.
Alternating row sums give the positive terms of
A015521.
Showing 1-4 of 4 results.
Comments