A152575 A triangle of coefficients of polynomials with roots as the Pi-digits base ten A000796(n)=d(n):d(1)=3; p(x,n)=-d(1)*Product[x-d(m),{m,2,n}].
-3, 3, -3, -12, 15, -3, 12, -27, 18, -3, -60, 147, -117, 33, -3, 540, -1383, 1200, -414, 60, -3, -1080, 3306, -3783, 2028, -534, 66, -3, 6480, -20916, 26004, -15951, 5232, -930, 84, -3, -32400, 111060, -150936, 105759, -42111, 9882, -1350, 99, -3, 97200
Offset: 1
Examples
{-3}, {3, -3}, {-12,15, -3}, {12, -27, 18, -3}, {-60, 147, -117, 33, -3}, {540, -1383, 1200, -414, 60, -3}, {-1080, 3306, -3783, 2028, -534, 66, -3}, {6480, -20916, 26004, -15951, 5232, -930, 84, -3}, {-32400, 111060, -150936, 105759, -42111, 9882, -1350, 99, -3}, {97200, -365580, 563868, -468213, 232092, -71757, 13932, -1647, 108, -3}
Crossrefs
Programs
-
Mathematica
Clear[a, p, n, m]; a = Delete[Flatten[RealDigits[Pi, 10, 100]], 100]; p[x_, n_] := If[n == 1, -a[[1]], -a[[1]]*Product[x - a[[m]], {m, 2, n}]]; Table[CoefficientList[p[x, n], x], {n, 1, 10}] Flatten[%]
Formula
Pi-digits base ten A000796(n)=d(n):
p(x,n)=-d(1)*Product[x-d(m),{m,2,n}].
Comments