A122854 Expansion of phi(q)^2*psi(q)^4 in powers of q where phi(),psi() are Ramanujan theta functions.
1, 8, 26, 48, 73, 120, 170, 208, 290, 360, 384, 528, 651, 656, 842, 960, 960, 1248, 1370, 1360, 1682, 1848, 1898, 2208, 2353, 2320, 2810, 3120, 2880, 3480, 3722, 3504, 4420, 4488, 4224, 5040, 5330, 5208, 5760, 6240, 5905, 6888, 7540, 6736, 7922, 8160, 7680
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Mathematica
a[n_]:= SeriesCoefficient[q^(-1/2)*(EllipticTheta[2, 0, q^(1/2)]^4 * EllipticTheta[3, 0, q]^2)/16, {q, 0, n}]; Table[A122854[n], {n, 0, 50}] (* G. C. Greubel, Jan 04 2018 *)
-
PARI
{a(n)= local(A, p, e, f); if(n<0, 0, n=2*n+1; A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 0, f=(-1)^(p\2); (p^(2*e+2)-f^(e+1))/(p^2-f)))))}
-
PARI
{a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^18/(eta(x+A)^8*eta(x^4+A)^4), n))}
Formula
Expansion of q^(-1/2)eta(q^2)^18/(eta(q)^8*eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [ 8, -10, 8, -6, ...].
a(n)=b(2n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = ((p^2)^(e+1)-1)/(p^2-1) if p == 1 (mod 4), b(p^e) = ((p^2)^(e+1)-(-1)^(e+1))/(p^2+1) if p == 3 (mod 4).
G.f.: Sum_{k>0 odd} k^2*x^k/(1+x^(2k)) = Product_{k>0} (1-x^(2k))^6*(1+x^k)^8/(1+x^(2k))^4.
Sum_{k=1..n} a(k) ~ c * n^3, where c = Pi^3/24 = 1.291928... (A152584). - Amiram Eldar, Dec 29 2023
Comments