A152650 Triangle of the numerators of coefficients c(n,k) = [x^k] P(n,x) of certain polynomials P(n,x) given below.
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 9, 4, 1, 1, 2, 9, 8, 5, 1, 1, 4, 27, 32, 25, 6, 1, 1, 4, 81, 32, 125, 18, 7, 1, 1, 8, 81, 128, 625, 36, 49, 8, 1, 1, 2, 243, 256, 625, 54, 343, 32, 9, 1, 1, 4, 729, 1024, 3125, 324, 2401, 256, 81, 10, 1
Offset: 0
Examples
The triangle c(n,k) and polynomials start in row n = 0 as: 1 = 1; 1, 1 = 1 + x; 1/2, 2, 1 = 1/2 + 2*x + x^2; 1/6, 2, 3, 1, = 1/6+2*x+3*x^2+x^3 1/24, 4/3, 9/2, 4, 1, = 1/24 + 4/3*x + 9/2*x^2 + 4*x^3 + x^4; 1/120, 2/3, 9/2, 8, 5, 1, = 1/120 + 2/3*x + 9/2*x^2 + 8*x^3 + 5*x^4 + x^5; 1/720, 4/15, 27/8, 32/3, 25/2, 6, 1, = 1/720 + 4/15*x + 27/8*x^2 + 32/3*x^3 + 25/2*x^4 + 6*x^5 + x^6; 1/5040, 4/45, 81/40, 32/3, 125/6, 18, 7, 1 = 1/5040 + 4/45*x + 81/40*x^2 + 32/3*x^3 + 125/6*x^4 + 18*x^5 + 7*x^6 + x^7;
Links
- Jean-François Alcover, Plot showing roots of P(20,x)
Programs
-
Maple
u := proc(i) 1/i! end: P := proc(n,x) option remember ; if n =0 then u(0); else u(n)+x*add( u(i)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end: A152650 := proc(n,k) p := P(n,x) ; numer(coeftayl(p,x=0,k)) ; end: seq(seq(A152650(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Aug 24 2009
-
Mathematica
ClearAll[u, p]; u[n_] := 1/n!; p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n-i-1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Numerator (* Jean-François Alcover, Oct 02 2012 *)
Extensions
Edited and extended by R. J. Mathar, Aug 24 2009
Comments